Water allocation among competing uses in Zawia and Zahra areas of Libya

Ali Ali Omar Ramadan
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
Part of the Agricultural and Resource Economics Commons, $\underline{\text { Agricultural Economics Commons, }}$ and the Economics Commons

Recommended Citation

Ramadan, Ali Ali Omar, "Water allocation among competing uses in Zawia and Zahra areas of Libya" (1978). Retrospective Theses and Dissertations. 17020.
https://lib.dr.iastate.edu/rtd/17020

Water allocation among competing uses you
in Zawia and Zahra areas of Libya
by

Ali Ali Omar Ramadan

A Thesis Submitted to the
Graduate Faculty in Partial Fulfillment of
The Requirements for the Degree of MASTER OF SCIENCE

Department: Economics
Major: Agricultural Economics

Signatures have been redacted for privacy

Iowa State University
Ames, Iowa
1978

TABLE OF CONTENTS
Page
CHAPTER I INTRODUCTION 1
The Libyan Economy and Importance of Water 1
The Problem of Water Allocation 5
The problem within agriculture 5
The problem among sectors 6
Objectives of Study 6
The Method Used in Pursuing Objectives 7
Organization of Report 7
CHAPTER II THEORY OF WATER ALLOCATION AMONG COMPETING USES 9
CHAPTER III STUDY PROCEDURE AND DEVELOPMENT OF THE MODEL 14
Linear Programming as a Tool for Resource Allocation 14
Use of linear programming 14
Components of a linear programming model 14
Assumptions of linear programming 16
Development of the Programming Model 18
Description of the model 19
List of activities (columns of matrix by type and number) 19
List of restraints (rows of matrix) 23
Development of coefficients 28
Assumptions and points to observe 29
Data Needs of Mode1 30
CHAPTER IV APPLICATION OF MODEL TO STUDY AREA AND RESULTS 31
Study Area 31
Data Collection with Limitations 33
Application of the Model 35
Results of Application 36
CHAPTER V INTERPRETATION OF RESULTS AND RECOMMENDATIONS 40
The Solutions 40
Solution One 45
Crop activities 45
Livestock activity 48
Resources completely used 48
Commodity buying and selling 49
Stability of the solution (range analysis) 50
Section 1 -- Rows at 1imit level 50
Section 2 -- Columns at limit level 51
Section 3 -- Rows at intermediate level 52
Section 4 -- Columns at intermediate level 54
Parametric analysis of water 55
Solution Two 59
Crop activities 60
Resources completely used 60
Commodity buying and selling 60
Range analysis 61
Solution Three 62
Crop activities 62
Page
Resources completely used 62
Commodity buying and selling 63
Range analysis 63
Solution Four 64
Crop activities 64
Resources completely used 65
Commodity buying and selling 65
Range analysis 66
Solution Five 66
Crop activities 66
Resources completely used 67
Commodity buying and selling 67
Range analysis 67
Solution Six 68
Crop activities 68
Resources completely used 68
Commodity buying and selling 69
Range analysis 69
Possibilities of More Research and Expansion of Model 71
Recommendations 72
CHAPTER VI SUMMARY 75
BIBLIOGRAPHY 78
$\begin{array}{ll}\text { ACKNOWLEDGMENTS } & 80\end{array}$
APPENDIX A THE COST - OUTPUT DATA 81
$\begin{array}{lll}\text { APPENDIX B } & \begin{array}{l}\text { DATA MATRIX WITH THE COEFFTCIENTS, PRICES OF } \\ \text { OUTPUTS, VARIABLF COSTS, AND THE RESOURCES }\end{array} & \\ & \text { AVAILABLE }\end{array}$
$\begin{array}{ll}\text { APPENDIX C } & \begin{array}{l}\text { SUMMARIZED RESULTS OF THE LINEAR PROGRAMMING } \\ \text { COMPUTER OUTPUT }\end{array} \\ 135\end{array}$

LIST OF TABLES

Page
Table 1. Major resources used and their marginal value products 37
Table 2. Major activities in solution and their penalty costs 38
Table 3. Major marginal value products in the six solutions 41
Table 4. Crop activities in solution and their optimum levels 43
Table 5. Major income penalties in the six solutions 46
Table 6. The relationship between water parametric range and nine crops grown in the area 58
Table 7. A comparison between barley and tomato in resource use 70
Table $B-1$. The data matrix 105
Table C-1. Resources (rows) used in solution one 136
Table C-2. Activities (columns) used in solution one 138
Table C-3. Range analysis for solution one (rows at limit leve1) 140
Table $C-4$. Range analysis for solution one (columns at limit leve1) 144
Table C-5. Range analysis for solution one (rows at inter- mediate level) 145
Table C-6. Range analysis for solution one (column at inter- mediate leve1) 146
Table C-7. Resources (rows) used in solution two 150
Table C-8. Activities (columns) used in solution two 152
Table C-9. Resources (rows) used in solution three 154
Page
Table C-10. Activities (columns) used in solution three 156
Table C-11. Resources (rows) used in solution four 158
Table C-12. Activities (columns) used in solution four 160
Table C-13. Resources (rows) used in solution five 162
Table C-14. Activities (columns) used in solution five 164
Table C-15. Resources (rows) used in solution six 166
Table C-16. Activities (columns) used in solution six 169
Table C-17. Ranges of major resources at limit level 171
Table C-18. Ranges of major activities at limit level (solutions 2-6) 176
Table C-19. Ranges of major resources at intermediate level (solutions 2-6) 179

viii

LIST OF FIGURES

Page
Figure 1. International borders of Libya 3
Figure 2. Hypothetical water allocation between two uses 10
Figure 3. Production decisions in relation to production possibilities and relative product prices 11
Figure 4. A cross section of study area 32
Figure 5. A relationship between parametric increments of water and income, owned capital, and borrowed capital 56
Figure 6. A relationship between parametric increments of water and owned labor and hired labor 57

CHAPTER I

INTRODUCTION

Water scarcity in Libya is an important factor in determining the kinds of crops farmers can grow and the amounts of land utilized in each crop. The problem of water scarcity accelerates with the lack of sufficient rainfall which recharges underground reservoirs. Allocation of the available supply of water appears to be inefficient. Possible reasons for this inefficiency include: (1) customary farming practices whereby water becomes either underused or overused, and (2) farmer's lack of adequate information about water allocation and use. Improving the extension techniques and demonstrating to farmers the proper ways of farming could help solve the above problems. Basically however, the problems are how to find adequate sources of water and how to allocate the available supply between uses and users in a manner that maximizes the value product of water.

The general goal of this study is to develop a model for the allocation of the available supply of water in the area of study and to determine how many hectares of each crop could be grown under this allocation.

The Libyan Economy and Importance of Water
Libya is an independent country located on the north-central coast of Africa. The Mediterranean borders Libya on the north, Tunisia and Algeria on the west, Sudan on the southeast, Niger and Chad on the
south, and Egypt on the east (Figure 1). The area of Libya is 679,360 square miles and the population is about 2.20 million with an annual growth rate of 3.7 percent (26). The capital of Libya is Tripoli with a population of 247,000 (26).

Most of the cultivated land is located on the coastal area. However, there are new agricultural projects located in the eastern and southern areas. The main crops grown in the coastal area are barley, wheat, vegetables, and fruit trees including olives, figs, dates, grapes, almonds, and peaches.

The coastal climate is generally mild with a minimum temperature in winters of $5^{\circ} \mathrm{C}$ and a maximum of $41^{\circ} \mathrm{C}$ in summers (Mediterranean climate) (11). Rainfall is not enough for intensive agriculture but generally is enough for grain crops and some drought resistant trees including olive, palm, and fig. The rainfall is generally about 14 inches per year on the coastal area, 12 inches per year on the western area, 18 inches per year on the Green Mountains in the eastern area, and decreasing towards south (11). Although underground water is relatively scarce when compared with some other areas in the world, all farming in the coastal area and agricultural projects depends primarily on this source.

The Libyan economy depends heavily on water. The process of oil pumping uses considerable water presently and will use more water in the future when most of the wells reach the secondary recovery stage when water or gas become necessary. With the reclamation of thousands

Figure 1. International borders of Libya
of hectares of land, demand for water will increase rapidly. The increase in construction also demands large quantities of water. Industry and manufacturing require huge amounts of water and with anticipated rapid industrial development, demand for water will increase sharply. Besides all the above water-consuming sectors, the population is increasing 3.7 percent annually which means higher demands for water in homes. The government, through the Ministry of Water and Dams, is spending considerable amounts of money in surveying the entire country for the possibility of finding new sources of water. As a result, a large underground reservoir of water has been discovered in the eastern part of the country near the border of Egypt. That reservoir is believed to be an extension of a similar one which has been found in the western area of Egypt with the help of an American company. Most of the oil revenue is being used in developing the Libyan agriculture and industry which are believed to be the two sound foundations for further development of the country in the post-petroleum period.

Water is generally suitable for agricultural use except in the coastal areas where the interference of the salty sea water with the water table is increasing. Such areas are Janzour, the north part of Zawia, and the north part of Tajoura (10). The Ministry of Agriculture is engaged in (1) limiting the amounts of crops farmers can grow in those areas and (2) prohibiting the growing of certain crops including tomatoes and potatoes. The ultimate purpose of this program is water conservation.

The uses of water can be divided into two main categories: (1) production uses and (2) consumption uses. Production uses include navigation, power, and manufacturing uses while consumption uses include domestic, agriculture, and petroleum.

The Problem of Water Allocation
Water allocation and conservation are essential criteria especially for areas experiencing water scarcity. The decisions of water allocation are very important but before making those decisions, three facts have to be understood.
"First, are the objectives to be achieved. Second, are the means available for achieving the desired objectives. Third, are the consequences of the several alternative means (practices or policies) in terms of achievement of the stated objectives" (23).

There are two closely related levels of allocative decisions within the process of decision making. The first level involves decisions among competitive uses. The second level involves decisions among competitive users. In the first level, decisions must be made concerning the amount of physical supply of water that is to be made available for particular uses. In the second level, decisions must be made on how the available water is to be allocated among competing uses. Use and user decisions are closely related and should be understood (23). The problem within agriculture

There is little scientific water allocation in the area of study where some farmers probably use too much water for crops with low water requirements and some use too little water for crops with high
water requirements in relation to optimum allocation. The lack of information, farmers' education, and extension people are the main reasons behind the misallocation of available water in the area. One of the main purposes of the linear programming model used in this report is to demonstrate how water may be allocated among the competing crops grown in the area.

The problem among sectors
As mentioned earlier, all sectors of the economy are competing for water use. Most of the competition is among agriculture, industry, petroleum, construction, and home use. Those sectors of the economy can be treated like crops within agriculture, and different theories of water allocation can be successfully applied. The attention in this report is given to allocating water among competing crops without attempting to deal with the other economic sectors. Eventually, studies concerned with intersectional allocation must be undertaken to resolve water allocation problems between sectors.

Objectives of Study

The objectives of this study are:

1. To develop a model for allocating water among different uses (crops) in the area of study.
2. To apply the model in the study area in demonstrating how many hectares of each crop should be grown under varying amounts of water supplies.
3. To suggest further research on procedures with improved data for achieving objectives.

The Method Used in Pursuing Objectives
A linear programming model is used to achieve the stated objectives. This model includes information needed from the area of study qualified by the serious limitations which will be stated later.

Thus, some of the data used are regarded as proxy data for purposes of testing application of the model. Improved data will be obtained in the future and will replace the proxy data with appropriate changes in the conclusions.

Organization of Report
This report is organized as follows:
In Chapter I the introduction, the problem, the objectives of study, the procedures used in pursuing objectives, and the organization of report are presented.

In Chapter II theory of water allocation among competing uses is explained.

In Chapter III the study model is developed in relation to conditions in the area of study.

In Chapter IV the results of the model application and data analysis are presented.

In Chapter V the interpretation of results and recommendations are included.

Finally, in Chapter VI the summary is presented.

CHAPTER II

THEORY OF WATER ALLOCATION AMONG COMPETING USES

Two simple diagrams are used in presenting the analytical framework for water allocation among several competing uses (crops) (Figures 2 and 3).
"The underlying assumptions in this model are (1) a given supply of water, and (2) two alternative competing uses for the given supply" (23).

In order to present the idea only two competing crops are shown (alfalfa and tomato). Of course, many alternative crops may be competing for the use of a given amount of water.

The budgeting curve AE shows all possible allocations to two crops of a given supply of water. The total supply of water could be placed in alfalfa. This extreme allocation of the given water supply to alfalfa would be represented by point A. Another alternative allocation would be point E, wherein use of the entire water supply would be allocated to tomato. Besides these extreme allocations of water, numerous possible combinations of uses could be selected. For example, point B represents 8 units of alfalfa and 2 units of tomato which could be produced; point D represents 2 units of alfalfa and 8 units of tomato; point C represents 5 units of alfalfa and 5 units of tomato; or any other of the numerous combinations along the curve AE. But the important thing is which one of these numerous alternative combinations is the optimum.

The answer cannot be given unless we are able to place values on the products and factors. The selection of alternative uses should

Figure 2. Hypothetical water allocation between two uses
be based on a flexible choice criterion reflecting the changing desires of consumers. The choice criterion usually employed in specifying how resources should be used is the pricing mechanism. If the sacrifice ratio among products (resource uses) is equal to the product price ratio, taking in account the production costs, then profit is at a maximum; i.e., the substitution ratio among production possibilities must be equal to the price ratio.

This principle is illustrated in the diagram below. Assume that from a fixed supply of one resource (such as water), or a fixed supply of bundle of resources (such as water, capital and land), the following combination of products can be produced: all of alfalfa and none of tomato; 90 of alfalfa and 10 of tomato; 70 of alfalfa and 20 of tomato;
etc. as illustrated in the figure below. The production possibility curve presents the substitutional relationship. For example, in a change from a combination of 100 alfalfa and no tomato, to 90 alfalfa and 10 tomato, we sacrifice one unit from the former for each one unit gain in the latter. Under a third combination, wherein 70 alfalfa and 20 tomato are produced, two units of alfalfa are lost for each one of tomato gained. Under a fourth combination, 40 alfalfa and 30 tomato are produced resulting in a gain of one unit of tomato for each three units of alfalfa sacrificed. Generally, increasing shifting water for one use entails increasing sacrifices in other uses to the degree water is scarce in relation to total demand.

Figure 3. Production decisions in relation to production possibilities and relative product prices

Now suppose that the consuming society says that it likes both products alfalfa and tomato but that it places a per unit price on tomato which is 2.5 times the unit price of alfalfa (Figure 3). This price ratio, a price for tomato that is 2.5 times the price of alfalfa, is the choice criterion, the expression of relative importance by the consuming society that serves to indicate the optimum use of resources. The farmer growing the two crops can increase his profits by expanding tomato production at the expense of alfalfa production as long as the substitution ratio of tomato for alfalfa (i.e., the amount of alfalfa sacrificed to gain one more unit of tomato) is less than the price ratio, expressed in terms of the quotient of price of tomato divided by price of alfalfa.

Hence, since the substitution ratio, between the first two combinations of crops, is only one, and is less than the price ratio of 2.5 , the second combination is preferrable to the first (Figure 3). The third combination (70 alfalfa and 20 tomato) also is preferrable to the second since the substitution ratio of 2.0 , in going between the second and third combinations, is still less than the price ratio of 2.5. However, the fourth combination is not preferrable to the third, since the relative amount of alfalfa sacrificed to gain one more unit of tomato is more than proportional to the greater weight placed on tomato by consumers.

Hence, a general principle has been indicated for attainment of our first major condition. It is necessary to determine the production possibilities in the use of water and determine the rate at which one
use must be sacrificed to allow attainment of another use. Then, these production possibilities and substitution ratios must be related to the relative importance that consumers attach to the different uses. Water laws alone are not capable of optimum allocation of water but with the above principle water can be allocated efficiently.

The above idea can be applied to all crops (uses) within the agricultural sector. The most efficient crops in water use should be expanded and the inefficient ones should be reduced. For example, if crop A uses five units of water and yields ten units of output, and if crop B uses the same five units of water and yields only six units of output, then crop A should be expanded in production and crop B should be limited in production. Taking into account the prices of outputs, the costs of inputs, and the need for the product is very important when making a decision like the one above.

Allocating water among different sectors of the economy is crucial. It has been shown before that all sectors of the economy consume water and the demands for it are increasing at an increasing rate. These sectors of the economy can be treated the same way as the crops treated in the agricultural sector above. The same idea used to allocate water among the crops can be used to allocate water among the sectors of the economy. The most efficient sectors in water use -- taking into account the kind of policy, the prices of the products, the costs of the factors, and the need for the output -- should be enhanced and the deficient sectors in water use should be limited.

CHAPTER III

STUDY PROCEDURE AND DEVELOPMENT OF THE MODEL

Linear Programming as a Tool for Resource Allocation

Use of 1inear programming

Linear programming is one of the most frequently and successfully applied mathematical approaches by decision makers. The objective in using linear programming is to develop a model to aid decision makers in determining the optimal allocation of scarce resources among competing uses. Since resources used on farms have economic values and outputs of farms lead to profits and costs, the linear programming problem becomes that of allocating the scarce resources in a manner such that revenue is a maximum for particular levels of costs or costs are minimum for particular levels of products. Two factors give rise to the allocation problem. First, resources available to farmers have a cost and are limited in supply; therefore, farmers as decision makers must determine how limited resources will be used. Second, the allocation of the resources must be made in accordance with some overall objective. In the farming sector, this objective is normally the maximization of profit or the minimization of cost. Components of a linear programming model

The three necessary components of a linear programming model are: (1) the objective function, (2) the alternative methods of meeting the requirements of the objective function, and (3) the restraints on the quantity of resources available.

The usual goal of any farmer is assumed to be profit maximization; however, additional goals of the farmer may be included in the linear programming model. For example, the farmer may eliminate hiring any labor, maintain a minimum amount of land in wheat, or take a certain number of days of vacation per month.

If a farmer has only one method of producing a crop, such as barley, the problem of maximizing farm income is relatively simple; he should produce as much barley as possible up to the point where marginal cost equals marginal revenue taking the relevant constraints into account. However, if there are numerous ways, that is, different combinations of inputs called a process or an activity, to produce barley and numerous ways to produce other crops and/or livestock, then the problem of determining optimal production becomes very difficult. Linear programming becomes a useful tool in determining optimal resource allocation under those conditions.

A linear programming problem does not exist unless there are resources of limited quantity. Thus, if the farmer who irrigates does not have a limited quantity of water for irrigation, and/or limited land, and/or 1 imited capital, and/or a limit on some other resources, then he has no problem amenable to linear programming application. If there are only a few resource restrictions, then either arithmetic or graphics may be used to solve for the optimal combinations of products to produce. However, on most farms there are numerous resource restrictions and processes; thus, linear programming is a useful analytical tool.

Assumptions of linear programming

Heady and Candler list the four major assumptions made in the application of linear programming as:

1. Additivity and 1inearity. The activities must be additive in the sense that when two or more are used; their total product must be the sum of their individual products.
2. Divisibility. It is assumed that factors can be used and commodities can be produced in quantities which are fractional units.
3. Finiteness. It is assumed that there is a limit to the number of alternative activities and to the resource restrictions which need be considered.
4. Single value expectations. In general (the assumption is made) that resource supplies, input-output coefficients, and prices are known with certainty (13, p.17).

These assumptions are not as restrictive as it may appear. It has been demonstrated (6) that the linear programming model is a logical extension of linear economic theory which is itself a restatement of the conventional theory of competitive equilibrium. In fact, "linear programming is marginal analysis, appropriately tailored to a finite number of activities" (6, p. 133).

If the assumption of a homogenous production function is acceptable, it is difficult to argue with the linearity assumption employed in programming (19, p. 84). However, because of resource indivisibilities
variable proportions may have to be accepted in some cases. Fortunately, such a situation may be approximated by means of a series of linear segments (3).

The divisibility assumption is a necessary mathematical requirement in the simplex method and can be adapted to a particular empirical problem. Thus, if the solution specifies that $74,000.31$ hectares of barley be grown, we may reasonably ignore the decimal figure. For other programming problems where a fractional answer is totally meaningless and unacceptable, a modification known as integer programming may be used (9). Thus, the divisibility assumption is not as restrictive as it may first appear.

The additivity assumption may impose certain limitations. It does not permit, for example, a complementary relationship between any two activities but we can get around this problem by dealing with products as joint products like the case of raising dairy cows for milk and calves.

The finiteness assumption also, while a necessary mathematical requirement, does not impose restrictions in empirical investigations. It is true that water, for example, may be applied in increasingly small amounts on a farm. A farmer, however, is far from interested in considering this number of alternatives. We may, therefore, only include three or four discrete levels in an analysis.

The assumption of single valued expectations while certainly unrealistic for some farming situations may be partially overcome by the use of parametric techniques as in the case when a proposed available
water supply is allowed to vary (see application of the model, next chapter). This modification, however, does not explicitly consider the effects of, for example, weather variability or risk aversion.

We have now found that in empirical analysis the assumptions of linear programming are not so restrictive as to limit the usefulness of the technique.

Development of the Programming Model
A linear programming optimization model is developed to suit the area of study. This model consists of 76 rows (restraints) and 73 columns (activities). Among the activities there are a dairy cow raising activity and a feed buying activity (APPENDIX B). The model has a right hand side column which contains the total amounts of resources available for production. That is, a column consists of as many rows as the number of rows in the matrix. A1so, the model has an objective function which is called a "c" row and contains all the prices and variable costs of a unit of the activity.

Multiple right hand side columns are used to find the effect of different levels of resource availability. Also, multiple objective function rows are used to see the effect of different prices and variable costs on the solution. The $A_{i j}$ coefficients, that is the ith row and the jth column will be plugged into the model. A1though some of the $A_{i j}$ coefficients are not accurate the model can be used as a framework and when the accurate coefficients become available they can easily replace the inaccurate ones. The $A_{i j}$ coefficients
which are not accurate are labor needed per hectare for picking green peppers, onions, potatoes, tomatoes, and watermelon, labor needed per year for mowing alfalfa, and tomatoes yield per hectare. Description of the model

A single period linear programming model based on the restraints and possible activities is designed. The program objective is to maximize income over all variable costs taking into account the restraints imposed. List of activities (columns of matrix by type and number)

1. Crop producing and growing activities. These activities include seedbed preparation, planting, fertilizer spread, chemicals, spraying, and machinery used for seedbed preparation. (The unit of activity for every activity listed below is one hectare.)

P01 Producing and growing barley.
P02 Producing and growing corn.
P03 Producing and growing wheat.
P04 Producing and growing peanuts.
P05 Producing and growing tomatoes.
P06 Producing and growing potatoes.
P07 Producing and growing onions.
P08 Producing and growing green peppers.
P09 Producing and growing watermelon.
P10 Producing and growing alfalfa.
P11 Producing and growing millet for forage.

P12 Producing and growing faba-beans.

P13 Producing and growing oats for forage.
2. Crop watering activities. (Included here are only the costs
of watering).
P14 An activity which permits irrigating one hectare of barley.

P15 An activity which permits irrigating one hectare of corn.
P16 An activity which permits irrigating one hectare of wheat.

P17 An activity which permits irrigating one hectare of peanuts.

P18 An activity which permits irrigating one hectare of tomatoes.

P19 An activity which permits irrigating one hectare of potatoes.

P20 An activity which permits irrigating one hectare of onions.

P21 An activity which permits irrigating one hectare of green peppers.

P22 An activity which permits irrigating one hectare of watermelon.

P23 An activity which permits irrigating one hectare of alfalfa.

P24 An activity which permits irrigating one hectare of millet for forage.

P25 An activity which permits irrigating one hectare of fababeans.

P26 An activity which permits irrigating one hectare of oats for forage.
3. Crop harvesting activities. Included here are the costs of harvesting only. (The activity unit is one hectare).

P27 An activity which has barley custom-combined and the hay put up by farmers.

P28 An activity which has corn custom-combined and hauling.
P29 An activity which has wheat custom-combined and the hay put up by farmers.

P30 An activity which has peanuts manually picked.
P31 An activity which has tomatoes manually picked.
P32 An activity which has potatoes manually picked.
P33 An activity which has onions manually picked.
P34 An activity which has green peppers manually picked.
P35 An activity which has watermelon manually picked.
P36 An activity which has alfalfa mowed 50 times per year by farmers.

P37 An activity which contains millet custom harvested and baled.

P38 An activity which includes faba-beans manually picked.
P39 An activity which has oats custom-harvested and baled.
4. Buying and selling activities.

P40 Barley selling. The activity unit is one metric ton (2240 1b).

P41 Corn selling. The activity unit is one metric ton.
P42 Wheat selling. The activity unit is one metric ton.
P43 Peanuts selling. The activity unit is one long ton.
P44 Tomato selling. The activity unit is one metric ton.
P45 Potato selling. The activity unit is one metric ton.

P46 Onion selling. The activity unit is one metric ton.
P47 Green pepper selling. The activity unit is one metric ton.

P48 Watermelon selling. The activity unit is one metric ton.
P49 Alfalfa selling. The activity unit is one metric ton.
P50 Millet selling. The activity unit is one metric ton.
P51 Faba-beans selling. The activity unit is one metric ton.
P52 Oats selling. The activity unit is one metric ton.
P53 Fertilizer buying. The activity unit is one pound.
P54 Feed supplement buying. The unit of activity is one metric ton.

P55 Water buying in Jan. 1 - Feb. 28. The unit of activity is one cubic meter.

P56 Water buying in Mar. 1-Apr. 30. The unit of activity is one cubic meter.

P57 Water buying in May 1 - June 30 . The unit of activity is one cubic meter.

P58 Water buying in July 1 - Aug. 30. The unit of activity is one cubic meter.

P59 Water buying in Sept. 1-0ct. 31. The unit of activity is one cubic meter.

P60 Water buying in Nov. 1 - Dec. 31. The unit of activity is one cubic meter.
5. Livestock production activities.

P61 Dairy cow raising and selling. Selling the culled cow and the milk. The activity unit is one cow.
6. Capital activities.

P62 Capital borrowing. The activity unit is one dollar.
7. Labor hiring activities. (The activity unit is one hour.)

P63 Labor hiring in Jan. 1 - Feb. 28.
P64 Labor hiring in Mar. 1 - Mar. 15.
P65 Labor hiring in Mar. 16 - Mar. 31.
P66 Labor hiring in Apr. 1 - Apr. 30.
P67 Labor hiring in May 1 - May 30.
P68 Labor hiring in May 31 - Aug. 30.
P69 Labor hiring in Sept. 1 - Oct. 31.
P70 Labor hiring in Nov. 1 - Nov. 30.
P71 Labor hiring in Dec. $1-$ Dec. 31.
The reason for arranging the labor periods as shown above is because the crops are either grown or harvested in those periods. So this arrangement eases the process of calculating labor and other inputs required by the crops.
8. Machinery custom-hiring activities.

P72 Custom-combine hiring. The activity unit is one hour.
P73 Custom-tractor hiring. The activity unit is one hour. List of restraints (rows of matrix)

By type and number. All restraints are maximum restraints (equal to or less than the total amount of resource available in the B column of each restraint).

1. Land restraints.

R01 A restraint on land. The land is homogenous. The B column unit is hectare.
2. Labor restraints. These restraints are on the labor provided by the farmers in the area without hiring outside labor. The restraint unit is one hour.

R02 A restraint on labor in Jan. 1 - Feb. 28.
R03 A restraint on labor in Mar. 1-Mar. 15.
R04 A restraint on labor in Mar. 16 - Mar. 31.
R05 A restraint on labor in Apr. 1 - Apr. 30.
R06 A restraint on labor in May 1 - May 30.
R07 A restraint on labor in May 31 - Aug. 30.
R08 A restraint on labor in Sept. 1 - Oct. 31.
R09 A restraint on labor in Nov. 1 - Nov. 30.
R10 A restraint on labor in Dec. 1 - Dec. 31.
3. Capital restraints.

R11 A restraint on head space of cows (capital accounting). The restraint unit is one head space.

R12 A restraint on operating capital. The restraint unit is one dollar.
4. Water requirement restraints. The restraint unit is one cubic meter.

R13 A restraint on water demanded by the crops in Jan. 1 Feb. 28.

R14 A restraint on water in Mar. 1 - Apr. 30.
R15 A restraint on water in May 1 - June 30.
R16 A restraint on water in July 1 - Aug. 30.
R17 A restraint on water in Sept. 1 - Oct. 31.
R18 A restraint on water in Nov. $1-$ Dec. 31.
5. Fertilizer availability restraints.

R19 A restraint on the fertilizer available for the crops. The restraint unit is one pound.
6. Machinery supply restraints.

R20 A restraint on custom-combine hire. The restraint unit is hour.

R21 A restraint of custom-tractor hire. The restraint unit is hour.
7. Grown crops transfer rows. Every hectare grown has to be transferred through the crop transfer rows to be watered. (The restraint unit is one watered hectare.)

R22 A grown barley transfer rows.
R23 A grown corn transfer row.
R24 A grown wheat transfer row.
R25 A grown peanut transfer row.
R26 A grown tomato transfer row.
R27 A grown potato transfer row.
R28 A grown onion transfer row.
R29 A grown green pepper transfer row.
R30 A grown watermelon transfer row.
R31 A grown alfalfa transfer row.
R32 A grown millet transfer row.
R33 A grown Faba-beans transfer row.
R34 A grown oats transfer row.
8. Water maximum restraints. These quantities of water were chosen high enough and parametric analysis was used on them to
find the effect of different levels of water on variables including income, production, labor, capital, etc. (The unit of restraint is one cubic meter.)

R35 A restraint on water in Jan. 1 - Feb. 28.
R36 A restraint on water in Mar. 1 - Apr. 30.
R37 A restraint on water in May 1 - June 30.
R38 A restraint on water in July 1 - Aug. 30.
R39 A restraint on water in Sept. 1 - Oct. 31.
R40 A restraint on water in Nov. 1 - Dec. 31.
9. Harvest transfer rows. Every watered hectare has to be transferred into harvesting, (The transferred unit is one hectare of crop.)

R41 A harvested hectare of barley transfer.
R42 A harvested hectare of corn transfer.
R43 A harvested hectare of wheat transfer.
R44 A harvested hectare of peanuts transfer.
R45 A harvested hectare of tomato transfer.
R46 A harvested hectare of potato transfer.
R47 A harvested hectare of onion transfer.
R48 A harvested hectare of green pepper transfer.
R49 A harvested hectare of watermelon transfer.
R50 A harvested hectare of alfalfa transfer.
R51 A harvested hectare of millet transfer.
R52 A harvested hectare of Faba-beans transfer.
R53 A harvested hectare of oats transfer.
10. Yield transfer rows. Every yield of a harvested hectare has to be transferred into its selling activity. (The unit of the transferred row is one metric ton.)

R54 A barley transfer row.

R55 A corn transfer row.

R56 A wheat transfer row.

R57 A peanuts transfer row.

R58 A tomato transfer row.

R59 A potato transfer row.
R60 An onions transfer row.
R61 A green peppers transfer row.
R62 A watermelon transfer row.

R63 An alfalfa transfer row.

R64 A millet transfer row.
R65 A Faba-beans transfer row.
R66 An oats transfer row.
11. Feed supplement transfer row.

R67 Feed supplement transfer row. The unit is one pound.
12. Labor hiring maximum restraints. (The unit is one hour.)

R68 A restraint on hiring labor in Jan. 1 - Feb. 28.
R69 A restraint on hiring labor in Mar. 1 - Mar. 15.
R70 A restraint on hiring labor in Mar. 16 - Mar. 31.
R71 A restraint on hiring labor in Apr. 1 - Apr. 30.
R72 A restraint on hiring labor in May 1 - May 30.

R73 A restraint on hiring labor in May 31 - Aug. 30.
R74 A restraint on hiring labor in Sept. 1-Oct. 31.
R75 A restraint on hiring labor in Nov. 1 - Nov. 30.
R76 A restraint on hiring labor in Dec. 1 - Dec. 30.

Development of coefficients

Most of the coefficients were obtained from the farmers in the area of study. A sample of fourteen farmers were interviewed in the summer of 1977. The coefficients obtained were either taken from the farmers'records or based on their past experience in farming. The price expectations and cost figures (APPENDIX A) used are the same as those which prevail in the area. Some biased coefficients were replaced by others which are obtained from the Agricultural Research Center (10). Most of the labor coefficients for dairy cows activity were based on past experience of the farmers. The C row coefficients are the net returns over variable costs not accounted for in the model of one unit of activity.

The B column coefficients for labor requirements were divided into periods over the year according to the times of growing and harvesting the different crops (APPENDIX A). The 1abor, capital, and other coefficients for the crop growing and harvesting activities were developed for a set of small sized machinery (European machinery) using information from the farmers in the area.

The six B column coefficients for the maximum amounts of water available were set arbitrarily at high levels, and parametric analysis
was applied since the actual data are not available. A second set of C row coefficients was developed to examine the effect of price and variable cost changes on the solution. Two more B columns were included to study the effects of different quantities of resources on the optimal solution. Six different solutions will be obtained in this model and will be explained later.

Assumptions and points to observe

1. Labor included in the B columns is the farmer's own labor only and hiring activities are included in the model.
2. Capital included in the B columns is the farmer's own capital and borrowing more capital at 8% in C_{1} or 5% in C_{2} is possible.
3. All harvesting other than alfalfa, barley, oats, millet and wheat is done manually.
4. Harvesting barley, oats, millet and wheat is done by hiring a custom harvestor. Alfalfa is mowed by the farmer's own machinery.
5. Barley growing activity, tomato growing activity, potato growing activity, and oats growing activity are bound at $75,000,10,000,11,000$ and 20,000 hectares, respectively. Those bounds are the requirements for the area based on the agricultural research center information.
6. The fixed cost of land, machines, wells, and the irrigation systems are not included and can be subtracted to get net income.

Data Needs of Model

The specified model with the availability of accurate data can help solve the problems of resource allocation in the area of study. The data needed are numerous and can be stated as follows: (1) The amount and cost of inputs (per unit) used in production. For example, the amount of seed or fertilizer needed for cultivating one hectare of land and the cost per unit of that input. (2) The total area of land suitable for cultivation. (3) The expected yield and market prices of the products. The unit of yield is a kilogram or a ton and the market prices are referred to that unit of production. (4) amount of capital required for production. (5) Amount of labor needed for finishing the agricultural practices. The amounts of labor in different periods and the labor required per one hectare are stated. (6) Machinery and other implements used in production. The total amount of machinery available is stated as a constraint and the amount needed per one hectare (expressed in time) is given in APPENDIX A.

The gross amounts of all the inputs needed for production are listed in the left hand side of the programming tableau. The row column coefficients are in terms of one unit of production, i.e. if there is a coefficient in the intersection of wheat growing column and the labor row, then that coefficient is hours of labor needed for growing one hectare of wheat.

CHAPTER IV

APPLICATION OF MODEL TO STUDY AREA AND RESULTS

Study Area

The area of study is a farming area located 30 kilometers to the west of the capital, Tripoli (Figure 4). This area is characterized by a homogenous type of soil, same weather conditions, and similar agricultural practices. All farms in the area are irrigated from aquifers. Every farm has its own water well. All farms in the area are privately owned and range in size from one to forty hectares. The area is characterized by relatively level land without any major mountains or hills. There is not any specific design or shape for the farms in the area. The borders between the farms are simply wind shelter trees or some kinds of spiky wind-shelter shrubs. There is an important need for agrarian reform with emphasis on land reform for the area to make production more efficient. The most commonly grown crops in the area are alfalfa, barley, corn, faba-beans, green peppers, millet, oats, onions, peanuts, potatoes, tomatoes, watermelon, and wheat. Dairy cows are the most common livestock raised in this area.

The area of study is about 40 by 50 kilometers, or 200,000 hectares. Approximately twenty-five percent of the area is covered with timber which can be removed and the land can be used for cultivation. One hundred and fifty thousand hectares are used as land restraint in B_{1} column, one hundred and twenty thousand in B_{2} column, and one hundred and eighty thousand in B_{3} column.

Figure 4. A cross section of study area

The capital structure of the area appears to be relatively low compared to the neighboring areas. The land fertility is poor and the feed space for dairy cows is insufficient. The capital supply is limited, water is scarce, and labor provided by the farmers in the area is not enough for cultivating the land.

Data Collection with Limitations

Detailed accurate data for any linear programming model are very important. When accurate data are available, the results can be meaningful and explain in detail the amount of land which could be utilized, the kinds of crops which could be grown, and the amounts of other resources which could be used.

Twenty randomly chosen farmers were intended to be interviewed from the area of study. The questionnaires were prepared and designed to cover all types of activities and practices farmers in the area pursue. For example, the kinds of crops they grow, the amounts and costs of inputs they use, and the amounts and prices of outputs they obtain. The major objective of the questionnaires was to find the effect of irrigation on farm return, i.e., to study the way farmers allocate water and to find the best alternative way to allocate this resource. Some agricultural information was to be obtained from the experts in the Agricultural Research Center, Ministry of Agricultural Development, Ministry of Water and Dams, Ministry of Planning, and E1-Fateh University in Tripoli.

Because of the limitations stated in the following pages only
fourteen interviews were made and only limited data were obtained. No significant information was obtained from any ministry mentioned above except Ministry of Agricultural Development.

There were a number of obstacles which prevented obtaining the needed information as planned. These obstacles were due to factors beyond the control of the author.

While the author was in Libya in July, 1977, the war started between Egypt and Libya which caused many problems. Most of the people including the farmers were either drafted or volunteered into the army. Because there were not enough farmers to interview the author had to interview some farmers' wives. Many answers from the women were not correct because of the lack of knowledge and the fear from taxing.

During the time the author was in the country, there were not enough people in the ministries to answer his questions concerning the research because they were in the army.

The author was given a governmental marked car to use in his travel from ministry to ministry or farm to farm. At the same time, the similar govermmental marked cars were used by the army, which led to the following problem. The soldiers guarding the roads to the study area or even in the city stopped the car frequently and ordered the author (driver) to bring or deliver certain things like food to them from different places, or give rides to other soldiers. Although the author
knew obeying the orders in these kinds of situations was part of his duty he lost a great deal of time, especially when the car was given to him for 25 days only.

As a result of the war, insufficient reliable data were obtained. Consequently, the data originating from the interviews and other sources were used as proxies in the linear programming model in order to demonstrate application of the model. When the accurate data becomes available, it can replace the proxy data.

Application of the Model

The linear programming model stated in the previous chapter could be applied to the area of study. The activities, restraints, and coefficients are shown on the matrix (APPENDIX B). The detailed data are shown in APPENDIX A).

A restraint is a limitation imposed on a resource, or hiring labor, or use of capital, or producing a certain quantity of output, or etc. Restraints can be maximum or minimum or equality.

A maximum restraint is like:

$$
3 x_{1}+2 x_{2}+x_{3} \leq 8
$$

A minimum restraint is like:

$$
3 x_{1}+2 x_{2}+x_{3} \geq 8
$$

An equality restraint is like:

$$
3 x_{1}+2 x_{2}+x_{3}=8
$$

An activity can be producing corn with a certain level of fertilizer or producing a combination of alfalfa and weed with a certain level of water. Buying or selling can also be called activities. A farmer can have more than one activity in producing a single or combinations of crops.

Since the total amount of water available in the area is not exactly known, parametric range analysis is applied to find the effect of different levels of water on the crops and amount of land each crop uses.

The control cards and the data deck are set up to give six solutions and the parametric range analysis is applied to six periods of proposed maximum amounts of water available. Many relationships between the parametrized water and some other variables are shown in a later section.

Every solution of the five parametric solutions obtained gives different amounts of water allocated to each crop. Finally, the possibilities of more research and study and the expansion of model are discussed 1ater.

Results of Application
The following table shows the major resources used in solution one and their marginal value products. The highest marginal value product is on the last hectare of land.

Table 1. Major resources used and their marginal value products

Major Resources	Total Amount Available	Amount Used	Marginal Value Product
R01, Land	150,000 ha	150,000 ha	\$699.35
R02, Owned 1abor Jan. 1-Feb. 28	$19,874 \mathrm{hr}$	$19,874 \mathrm{hr}$	6.72
R03, Owned labor Mar. 1-Mar. 15	$10,674 \mathrm{hr}$	$10,674 \mathrm{hr}$	8.40
R04, Owned labor Mar. 16-Mar. 31	$11,356 \mathrm{hr}$	$11,356 \mathrm{hr}$	110.45
R05, Owned labor Apr. 1-Apr. 30	$21,293 \mathrm{hr}$	$21,293 \mathrm{hr}$	70.66
R06, Owned labor May 1-May 30	$21,293 \mathrm{hr}$	$21,293 \mathrm{hr}$	13.44
$\begin{aligned} & \text { R07, Owned labor } \\ & \text { May 31-Aug. } 30 \end{aligned}$	$65,300 \mathrm{hr}$	65,300 hr	42.55
R08, Owned labor Sept. 1-Oct. 31	$44,006 \mathrm{hr}$	$44,006 \mathrm{hr}$	10.08
R09, Owned labor Nov. 1-Nov. 30	$21,293 \mathrm{hr}$	$21,293 \mathrm{hr}$	10.08
R10, Owned labor Dec. 1-Dec. 31	$22,003 \mathrm{hr}$	15,471.92 hr	0.0
R12, Operating capital	\$20,460,000	\$20,460,000	0.08
R20, Combine supply	$30,000 \mathrm{hr}$	$30,000 \mathrm{hr}$	13.40
R21, Tractor supply	$105,000 \mathrm{hr}$	$105,000 \mathrm{hr}$	12.30
R68, Hired labor Jan. 1-Feb. 28	$60,000 \mathrm{hr}$	$48,651 \mathrm{hr}$	0.0
R69, Hired labor Mar. 1-Mar. 15	$20,000 \mathrm{hr}$	$10,584 \mathrm{hr}$	0.0
$\begin{aligned} & \text { R70, Hired labor } \\ & \text { Mar. 16-Mar. } 31 \end{aligned}$	$40,000 \mathrm{hr}$	$40,000 \mathrm{hr}$	102.05
R71, Hired labor Apr. 1-Apr. 30	$120,000 \mathrm{hr}$	120,000 hr	62.26
R72, Hired labor May 1-May 30	$25,000 \mathrm{hr}$	$15,681 \mathrm{hr}$	00.00

Table 1. (continued)

Major Resources	Total Amount Available	Amount Used	$\begin{gathered} \text { Marginal } \\ \text { Value } \\ \text { Product } \\ \text { (\$) } \end{gathered}$
R73, Hired 1abor May 31-Aug. 30	$150,000 \mathrm{hr}$	150,000 hr	29.11
R74, Hired labor Sept. 1-Oct. 31	$30,000 \mathrm{hr}$	22,144 hr	00.00
R75, Hired 1abor Nov. 1-Nov. 30	$170,000 \mathrm{hr}$	132,582 hr	00.00
R76, Hired labor Dec. 1-Dec. 31	$1,000 \mathrm{hr}$	0 hr	00.00

The following table shows the major activities in solution one and their penalty costs,i.e., the loss as a result of forcing one more unit into the optimum solution.

Table 2. Major activities in solution and their penalty costs

Activity	Leve1 of Activity	Shadow Price (pena1ty costs) $(\$)$
P01, Bar1ey growing	$75,000 \mathrm{ha}$	$\$ 24,94$
P03, Wheat growing	$12,719 \mathrm{ha}$	00.00
P05, Tomato growing	$10,000 \mathrm{ha}$	213.90
P06, Potato growing	$11,000 \mathrm{ha}$	868.06
P07, Onion growing	$8,737 \mathrm{ha}$	00.00
P08, Green pepper growing	$1,667 \mathrm{ha}$	00.00
P12, Faba-bean growing	$10,875 \mathrm{ha}$	00.00
P13, Oats growing	$20,000 \mathrm{ha}$	00.00

Table 2. (continued)

Activity	Level of Activity	Shadow Price (penalty costs)
P40, Selling barley	187,500 metric ton	00.00
P42, Selling wheat	24,166 metric ton	00.00
P44, Selling tomato	300,000 metric ton	00.00
P45, Selling potato	225,500 metric ton	00.00
P46, Selling onion	183,487 metric ton	00.00
P47, Selling green pepper	17,007 metric ton	00.00
P51, Selling Faba-bean	100,058 metric ton	00.00
P53, Buying fertilizer	28,869 metric ton	00.00

Three B columns (total amount of each resource available) and two C rows (rows show the variable costs and the prices of inputs and outputs) are shown in the matrix (APPENDIX B). Some changes in columns B_{2} and B_{3} and also in row C_{2} are made (APPENDIX B). Those changes will be discussed in the next chapter.

CHAPTER V
 INTERPRETATION OF RESULTS AND RECOMMENDATIONS

This chapter gives the interpretation of the information obtained from applying the linear programming model developed in the previous chapter. All the six solutions are examined and answers to the issues raised under the objective of the study are given. Given the situation of low capital, scarce water, and the need for more labor, the following questions could be answered during the interpretation:

1. Is hiring more labor desirable?
2. Would raising more dairy cows be feasible?
3. Is borrowing more capital desirable?

The Solutions

Table 3 gives the six solutions in the "row numbers" from the computer printout.

Some shadow prices are relatively high compared to the rest. The reason for this variation is because the use of those resources is profitable and output prices of the activities connected with them are high. The highest total revenue per hectare is from potato (\$2066.3) APPENDIX A. Thus, compared to this total revenue those relatively high shadow prices are acceptable.

Table 4 shows the crop activities in solution and their optimum levels.

Wheat production is not feasible in solutions two and five because the variable costs of producing wheat are high compared to barley and

Table 3. Major marginal value products in the six solutions

	Solution One $(\$)$	Solution Two $(\$)$	Solution Three $(\$)$	Solution Four $(\$)$	Solution Five (\$)	Solution Six
$(\$)$						

Table 3. (continued)

	Solution One (\$)	Solution Two (\$)	Solution Three (\$)	Solution Four (\$)	Solution Five (\$)	Solution Six (\$)
R44, Peanuts transfer for harvest						
R45, Tomato transfer for harvest	1617.27	1686.98	1238.61	813.93	821.38	
R46, Potato transfer for harvest	1938.05	1938.05	1430.05	1239.26	1239.26	906.22
R47, Onion tranfer for harvest	1440.34	1454.93	1038.58	1227.62	1234.54	1092.90
R48, Green pepper transfer for harvest	1442.46	1435.93	1079.42	1208.73	1215.12	1084.38
R49, Watermelon transfer for harvest	1385.96	1456.66	1097.74	1266.74	841.64	
R50, Alfalfa transfer for harvest	1641.86	1664.97	1337.11	1518.71	1529.63	1711.12
R51, Millet transfer for harvest	1039.87	1084.08	1039.87	989.16	993.23	
R52, Faba-bean transfer for harvest	1085.77	1121.60	1459.35	1016.03	1033.04	1141.27
R53, Oats transfer for harvest	1039.87	1039.87	1039.87	940.54		
R69, Hired labor Mar. 1-15			1152.24			

Table 4. Crop activities in solution and their optimum levels

	Solution One (ha)	Solution Two (ha)	Solution Three (ha)	Solution Four (ha)	Solution Five (ha)
Crop activities in solution (numbers are activity units)	Six (ha)				
P01, Growing barley					

per unit output prices of other crops are higher than that for wheat. Thus, resources are more profitable in producing crops other than wheat. Tomato production is not feasible in solutions four, five, and six because of low per unit output price of tomatoes in C_{2} row. Green pepper production is not feasible in solution three because the resources are more efficient in producing more wheat and barley because of low variable costs compared to that in green pepper production. Oats production is not feasible in solutions four, five, and six because of low per unit output price and resources are more efficient in producing other crops. Some activities are in the basis at zero levels and are ignored. For the rest of activities in solution see APPENDIX C.

It is clear from Table 4 that most of the land should go to barley production in all solutions. Barley appears to be the most efficient crop in resource use, It uses less water and less labor compared to vegetable crops in these solutions. Oats production seems to be the second most efficient crop in solutions one and two. In solutions three, four, and six, wheat appears to be the second most efficient crop in resource use. The general idea that efficiency is based upon in these solutions, is when the crop (like barley) grown on most of the land this means the crop is efficient in resource use because the model is an optimization model. Naturally, barley, oats, and wheat use less labor and water than vegetable crops in these solutions (APPENDIX A). Thus, in the area of study most of the land should be allocated to
barley, oats, and wheat. More of these conclusions are given under each solution later.

Table 5 shows the major income penalties in the six solutions. In that table the penalty costs for raising dairy cows (P61) are very high because of high resource requirements especially labor. The dairy cows raised in the area are Frisian cows which are not native. Those kinds of dairy cows require more labor, specific kinds of shelter, and expensive equipment.

Solution One
This solution reports the optimum plan using prices and variable costs in C_{1} row and available resources in B_{1} column. For the coefficients of C_{1} row and B_{1} column, see the matrix (APPENDIX B).

Crop activities

Barley for grain (P01) 75,000.00 hectares
Wheat for grain (P03) 12,719.20 hectares
Tomatoes (P05)
$10,000.00$ hectares
Potatoes (P06)
$11,000.00$ hectares
Onions (P07) 8,737.48 hectares
Green peppers (P08) 1,667.41 hectares
Faba-beans (P12) 10,875.92 hectares
Oats for forage (P13) 20,000.00 hectares
A1l the land available ($150,000 \mathrm{ha}$) is used.

Table 5. Major income penalties in the six solutions

	Solution One (\$)	Solution Two (\$)
Activities not in solution (numbers are income penalties)		
P02, Growing corn	615.37	648.24
P03, Growing wheat	-	24.94
P04, Growing peanuts	734.08	742.13
P05, Growing tomato	-	-
P09, Growing watermelon	-	-
P10, Growing alfalfa	-	-
P11, Growing millet	19.70	-
P15, Watering corn	-	-
P17, Watering peanuts	-	-
P18, Watering tomato	-	-
P22, Watering watermelon	52.32	-
P24, Watering millet	-	-
P26, Watering oats	-	-
P36, Harvesting alfalfa	857.17	-
P39, Harvesting oats	-	-
P42, Selling wheat	-	-
P47, Selling green peppers	-	-
P48, Selling watermelon	-	5.72
P49, Selling alfalfa	-	106.62
P50, Selling millet	-	7.37
P54, Selling May 1-Jun. 30	358.40	358.40
P61, Raising dairy cows	3,302.01	3,705.72
P69, Labor hire Sept. 1-Oct. 31	-	-
P71, Labor hire Dec. 1-Dec. 31	6.72	6.72
P73, Custom-tractor hire	-	12.30
Returns over variable costs (C row value)	145,021,625.7	7,395.3

Table 5. (continued)

Solution	Solution	Solution	Solution
Three	Four	Five	Six
$(\$)$	$(\$)$	$(\$)$	$(\$)$

-	611.40	627.00	577.73
-	-	-	-
753.95	586.91	-	-
-	429.58	-	-
-	431.49	433.82	-
871.17	-	-	-
50.00	-	358.63	-
542.81	-	-	-
262.32	-	590.73	672.19
-	-	428.51	450.30
-	-	433.82	440.23
-	-	-	341.85
-	-	310.02	293.23
-	-	1,111.93	-
-	305.95	-	293.24
-	-	2.25	-
2.72	-	-	-
8.26	43.15	-	-
111.77	134.61	135.60	173.96
-	59.09	59.77	-
358.40	-	-	-
11,247.95	3,090.15	3,038.88	5,771.91
-	-	-	11.76
6.72	8.40	8.40	8.40
12.30	-	13.40	13.40
164,175, 053.8	105,585,805.7	87,834,962.5	32,500.3

Livestock activity

Dairy cow (P61). It is not profitable to raise any dairy cows and if one cow raised the penalty cost (the loss) is $\$ 3,302.61$.

Raising dairy cow is not feasible in all of the solutions because of the reasons mentioned before. Thus, it will be dropped from the interpretation.

Resources completely used

	Amount used	Value to solution of last unit (MVP)
Jan. 1-Feb. 28 labor, R02	19,874.00 hrs	\$ 6.72
Mar. 1-Mar. 15 labor, R03	10,647.00 hrs	8.40
Mar. 16-Mar. 31 labor, R04	$11,356.00 \mathrm{hrs}$	110.45
Apr. 1-Apr. 30 labor, R05	$21,293.00 \mathrm{hrs}$	70.66
May 1-May 30 labor, R06	21,293.00 hrs	13.44
May 31-Aug. 30 labor, R07	$65,300.00 \mathrm{hrs}$	42.55
Sept. 1-Oct. 31 labor, R08	$44,000.00 \mathrm{hrs}$	10.08
Nov. 1-Nov. 30 labor, R09	$21,293.00 \mathrm{hrs}$	10.08
Machinery supply for grain crops harvest, R20	30,000.00 hrs	13.40
Tractor for plowing, R21	105,000.00 hrs	12.30
Mar. 16-Mar. 31 maximum 1abor hire, R70	40,000.00 hrs	102.05
Apr. 1-Apr. 30 maximum labor hire, R71	120,000.00 hrs	62.26
May 31-Aug. 30 maximum labor hire, R73	150,000.00 hrs	29.11
Operating capital, R12	\$20,460.00	0.08

Commodity buying and selling

Sell barley, P40	187,500.00 MT ${ }^{1}$
Sell wheat, P42	24,166.47 MT
Sell tomatoes, P44	$300,000.00 \mathrm{MT}$
Se11 potatoes, P45	225,500.00 MT
Sell onions, P46	183,487.00 MT
Sell green peppers, P47	17,007.57 MT
Sell Faba-beans, P51	100,058.45 MT
Sell oats, P52	120,000.00 MT
Buy fertilizer, P53	28,869.49 MT
```Jan. 1-Feb. 28 water buy P55```	125,648,381.03 cubic meter
Mar. 1 -Apr. 30 water buy P56	169,856,404.18 cubic meter
May 1-Jun. 30 water buy P57	194,007,852.83 cubic meter
Jul. 1-Aug. 30 water buy P58	34,548,352.67 cubic meter
```Sept. 1-Oct. }31\mathrm{ water buy P59```	53,073,000.00 cubic meter
Nov. 1-Dec. 31 water buy P60	123,046,276.29 cubic meter
Capital borrow at 8%, P62	\$25,962,687.12

[^0]Based on this solution, most of the land available should be allocated to barley, oats, and wheat production because of their low intake of resources especially water. The five other feasible crops in this solution (Faba-beans, green peppers, onions, potatoes, and tomatoes) should be grown up to the optimum amount of land of each crop given by this solution. As an answer to the questions raised at the beginning of this chapter, hiring labor is feasible in all of the nine periods. Raising any dairy cows is not profitable for the reasons stated before. Borrowing more capital at 8% interest rate is desirable. Stability of the solution (range analysis)

Range analysis expands the information provided in the optimum solution. It makes the interpretation of shadow prices more useful by providing the range over which a shadow price is relevant (APPENDIX C). The range output contains four sections as follows:

Section 1 -- Rows at limit level The resources in the rows of this section are being at limit levels that is, all resources are completely used in the plan.

The last hour of March 16 - March 31 labor period (R04) added \$110.45 to the value of the program. Each hour reduction in labor from 11,355.99 to zero would reduce the value of the program by $\$ 110.45$. Each hour added from $11,355.99$ to $17,837.49$ would add $\$ 110.45$ to the value of the program. Onions harvest (P33) which is now in the basis will drop out of the basis when the lower limit is reached. Green peppers harvest (P34) which is now in the basis will drop out of the basis when the upper limit is reached.

The last ton of green pepper yield transferred for sale (R61) added $\$ 168.00$ to the value of the program. Although it is not reasonable, each ton from zero to infinity would add $\$ 168.00$ to the value of the program. This indicates that with combination of resources green pepper sale is profitable. Of course, if more resource or subjective restraints are imposed the range will change. Selling green peppers (P47) which is now in the basis will drop out of the basis when none of the green peppers is produced.

There are seven restraints in this section which are highly stable in the solution because their ranges are very wide and their levels in the solution are very far from the upper limits of their ranges. Those restraints are labor in January 1 - February 28 (R02), labor in March 1 March 16 (R03), labor in April 1 - April 30 (R05), labor in May 31 August 30 (R07), labor in November 1 - November 30 (R09), operating capital (R12), custom-combine hire supply (R20). The restraints above are stable because of the assumption of stability of owned labor and profitability to hire more, the profitability to borrow capital with 8% interest rate, and the profitability of hiring a custom-combine for harvesting crops. The remaining restraints are unstable because of the narrow range and the closeness of the levels of resources in plan to upper ranges boundaries.

Section 2 -- Columns at limit level In this section the attention is given to those real activities which did not enter the plan. They are at their lower limit of zero or the upper bounded limits.

Range analysis indicates that barley growing activity (PO1) is at its upper limit (because it is bounded). The solution will decrease by
$\$ 24.94$ per every hectare decreased and this continues down to zero hectares level. Each hectare increase from 75,000 up to $87,719.16$ will increase the objective function by $\$ 24.94$. Thus, the range of $\$ 24.94$ extends from zero to $87,719.16$ hectares. If the variable cost for growing barley in the C_{1} row increased beyond $\$ 66.37280$, then the level of barley growing activity (P01) in the optimum plan goes to zero. Note that barley growing activity is in solution but not in the basis because it is bounded. The penalty cost (shadow prices) signs of growing barley (P01), growing tomatoes (P05), growing potatoes (P06), and growing oats (P13) are positive because they are upper bounds. The upper quantity bounds stated above are based on information from the Agricultural Research Center.

The penalty cost for alfalfa harvest (P36) is $\$ 857.17$ per one hectare harvested. This penalty cost applies over the range of zero to 2,627.54 hectare of alfalfa. The penalty cost might increase after that.

Corn growing activity (P02) is not in solution and its shadow price (penalty cost) is $\$ 615.37$. If one hectare of corn is forced into the plan, the objective function will decrease by $\$ 615.37$ over the range of zero to 3081.16 hectares.

There is only one activity which is relatively stable in solution if compared to the rest. This activity is growing oats (P13). It is stable because its level in solution is not close to the upper boundary of its range.

Section 3 -- Rows at intermediate leve1 This section deals with those restraints which are not limiting; i.e., some resources are left
as slacks.
The restraint of owned labor in the period from December 1 - December 31 (R10) is in the basis at a level of $15,471.92$ hours. The C_{1} row value ($\$ 6.72$) will be the loss per hour if the program is forced to use less labor down from $15,471.92$ to $14,471.92$ hours. That is, $\$ 6.72$ is the marginal value product of the last unit used. If the program is forced to use more labor from $15,471.92$ up to $16,789.72$, the loss per hour would be $\$ 108.72$. Labor hiring in December 1 - December 31 (P71) which is not in the basis will enter the basis when the lower limit $(14,471.92)$ is reached. Growing millet (P11) which is not in the basis will enter the basis when the upper limit $(16,789.92)$ is reached.

There are seven highly stable restraints in this section because of their wide ranges and their levels in solution are very far from the upper boundaries of their ranges. The restraints are water available in July 1 - August 30 (R38), water available in November 1 - December 31 (R40), hiring labor in January 1 - February 28 (R68), hiring labor in March 1 - March 15 (R69), hiring labor in May 1 - May 30 (R72), hiring labor in Sept. 1 - Oct. 31 (R74), and hiring labor in Nov. 1 - Nov. 30 (R75).

The reasons for those wide ranges appear to be the availability of both labor and water under this solution (with the prices used) in those specific periods. Note that the total amount of water in every period of the six periods is arbitrary and assumed to be $300,000,000$ cubic meters. All the remaining restraints have narrow ranges because of the insufficient resources available; i.e., these restraints are not stable
in solution.
Section 4 -- Columns at intermediate level This section reports on the real activities which entered the plan. Because the plan is optimum, divergence from it will cause a decrease in the value of the program.

Wheat growing activity (P03) is in the basis at a level of $12,719.20$ hectares and diverging from this optimum will cause a decrease in the value of the program. An income penalty of $\$ 19.93$ arises for each hectare the activity is decreased below $12,719.20$ hectares. The same penalty applies till the land is decreased to 5529.81 hectare. Below this the penalty will increase. If (P03) is pushed beyond $12,719.20$, the penalty is $\$ 24.94$ per hectare. The same penalty applies up to $87,719.17$ hectares. If the variable cost of producing one hectare of wheat is increased beyond $\$ 78.23$, then the optimum level of land in wheat in the new plan is 5529.81 hectare. If the variable cost is reduced beyond $\$ 33.36$ rather than $\$ 58.30$, then $87,719.17$ hectares could be raised.

There are 13 activities in this section which are very stable because of their wide ranges. These wide ranges indicate that all the activities involved in the ranges can be produced profitably over the ranges. The activities are wheat growing (P03), green peppers growing (P08), irrigating a hectare of wheat (P16), irrigating a hectare of green peppers (P21), wheat harvest (P29), green peppers harvest (P34), selling wheat (P42), selling green peppers (P47), fertilizer buying (P53), water buying in July 1 - August 30 (P58), capital borrow (P62), custom-combine hire (P72), custom-tractor hire (P73). All remaining activities have narrow
ranges which means they are not stable in solution.
All restraints and activities in the four sections of the range analysis can be interpreted like the samples given under every section above. Those samples are the most important ones to illustrate the meaningful interpretation of range analysis. For more information, see APPENDIX C.

Parametric analysis of water
The arbitrary amount of water to start with is $300,000,000$ cubic meters in every period. Then there are five decreasing parametric increments which result in five solutions, one at every increment. The average of six watering periods in each solution is taken and these averages are used on the abscissas of Figures 5 and 6.

Figure 5 shows the relationship between the parametrized periods and income, the parametrized periods and owned capital, and the parametrized periods and borrowed captial. The three curves are increasing. The income curve shows that when less water is available, less production occurs and income is low. The capital curves show when less water is needed less capital is needed also to pay for that water. Figure 6 shows the relationships between the parametrized periods and hired and owned labor. Hiring labor is increasing and owned labor is slightly increasing up to increment three. Owned labor curve is constant from increment three to increment five. Hired labor curve shows that when more water is available more labor is needed because more land went into vegetable production which requires high rates of labor. The difference between the two curves is the amount of labor

Figure 5. A relationship between parametric increments of water and income, owned capital, and borrowed capital

Figure 6. A relationship between parametric increments of water and owned labor and hired labor

Table 6. The relationship between water parametric range and nine crops grown in the area

Parametric Range (Mil M	Barley (ha)	Green Pepper (ha)	Faba- beans (ha)	Oats (ha)	Onions (ha)	Millet (ha)	Potato (ha)	Tomato (ha)
700	75,000	1,667	10,875	20,000	8,737	0	11,000	10,000
(ha)								

hired over all periods of the five (solutions) increments.

Table 6 shows the relationship between the parametrized increments of water and nine crops grown in the area. Those nine crops are the crops feasible in the five solutions of the parametric range of water. Barley, oats, potato, and tomato are bounded at $75,000,20,000,11,000$, and 10,000 hectares of land respectively. Wheat production is not feasible in solution three, four, and five because most of the resources went into barley production. Variable cost of producing barley is less than that of producing wheat.

As water amount decreases the number of hectares of land in Fababeans and wheat decrease. As water amount decreases the number of hectares of land in green pepper and onions increase too. As water amount decreases the number of hectares of land in millet increase up to increment three then drop after that. Finally, barley, oats, potatoes, and tomato are bounded so the effect of water at every increment is not clear.

Solution Two

$A B_{2}$ column is introduced which is similar to the B_{1} column except that five restraints are changed. Land (R01) is decreased from 150,000 to 120,000 hectares. Operating capital (R12) is increased from $\$ 20,460,000$ to $\$ 25,500,000$. Combine supply time (220) is increased from 30,000 to 50,000 hours. Tractor supply time (R21) is increased from

105,000 to 115,000 hours. Labor from March 1 - March 16 (R69) is decreased from 20,000 to 10,000 hours. The reasons for the changes are to see the effects on the objective function and on the crops in solution. Crop activities

Barley for grain, P01 55,077.98 bectares
Tomatoes, P05 10,000.00 hectares
Potatoes, P06 11,000.00 hectares
Onions, P07 9,777.11 hectares
Green peppers, P08 4,650.41 hectares
Faba-beans, P12 9,494.50 hectares
Oats for forage, P13 20,000.00 hectares
A11 the land available has been used.
Resources completely used
The same as solution one except that tractor supply time (R21) is not completely used.

Commodity buying and selling
Sell barley, P40
$187,694.95$ мт
Sell tomatoes, P44 300,000.00 MT
Sell potatoes, P45 225,500.00 MT
Sell onions, P46 205,319.36 MT
Sell green peppers, P47 47,434.15 MT
Sell Faba-beans, P51 87,349.42 MT
Sell oats, P52 $120,000.00 \mathrm{MT}$
Buy fertilizer, P53 22,757.36 MT

$\underset{\text { P55 }}{\text { Jan. }} 1$ - Feb. 28 water buy	99,455,348.87 cubic meters
$\underset{\text { P56 }}{\text { Mar. }} 1$ - Apr. 30 water buy	128,330,348.11 cubic meters
May 1 - Jun. 30 water buy P57	147,885,375.68 cubic meters
$\begin{aligned} & \text { July } 1 \text { - Aug. } 30 \text { water buy } \\ & \text { P58 } \end{aligned}$	43,587,397.33 cubic meters
$\begin{aligned} & \text { Sept. } 1 \text { - Oct. } 31 \text { water buy } \\ & \text { P59 } \end{aligned}$	53,073,000.00 cubic meters
Nov. 1 - Dec. 31 water buy P60	93,669,180.66 cubic meters
Capital borrow at 8\%, P62	\$13,895,897.62

Range analysis

The marginal value product on land was higher in this solution than in solution one. The same idea of interpreting the range analysis used in solution one can be followed here (APPENDIX C).

As a result of introducing the B_{2} column (see matrix APPENDIX B) with the new five restraint levels mentioned before, the value of the program decreased by 15 percent from that of solution one. Wheat growing dropped out of the plan because most of the resources went to vegetable production. Levels of growing onions and green peppers are higher than those in solution one because resources are more efficient in producing those crops. Levels of growing barley and Faba-beans are lower than those in solution one because producing more vegetables is profitable in this situation. Remaining crops have equal levels in both solutions because of the upper bounds. For more information see APPENDIX C.

Solution Three

This solution reports the optimum plan using prices and variable costs in C_{1} row and available resources in B_{3} column. The B_{3} column is similar to B_{1} column except that four restraints are changed. Land (R01) is increased from 150,000 to 180,000 hectares. Operating capital (R12) is increased from $\$ 20,460,000$ to $\$ 30,500,000$. Combine supply time (R20) is increased from 30,000 to 100,000 hours. Tractor supply time (R21) is increased from 105,000 to 150,000 hours. The reasons for the changes are to find the effects on the objective function and on the crops in solution.

Crop activities
Barley for grain, P01 75,000.00 hectares
Wheat for grain, P03 62,520.62 hectares
Tomatoes, P05 10,000.00 bectares
Potatoes, P06 11,000.00 hectares
Onions, P07 4,870.23 hectares
Faba-beans, P12 5,264.50 hectares
Oats for forage, P13 11,344.56 hectares
A11 the land available ($180,000 \mathrm{ha}$) was used.
Resources completely used
All the resources available are used except the farmers ${ }^{\text {' }}$ own labor in period nine (R10); tractor time supply (R21), and maximum labor hire in rows (R68, R70, R71, R74, and R76) were not completely used.

Commodity buying and selling

Sell barley and tomatoes are the same as solutions one and two.

Se11 wheat, P42
Sell potatoes, P 45
Se11 onions, P46
Sell Faba-beans, P51
Sell oats, P52
Buy fertilizer, P53
Jan. 1 - Feb. 28 water buy P55

Mar. 1 - Apr. 30 water buy P56

May 1 - Jun. 30 water buy P57

Ju1. 1 - Aug. 30 water buy P58

Sept. 1 - Oct. 31 water buy P59

Nov. 1 - Dec. 31 water buy P60

Capital borrow at 8\%, P62
$118,789.18$ MT
$225,500.00 \mathrm{MT}$
$102,274.76$ MT
48,433.36 MT
$68,067.95 \mathrm{MT}$
36,084.90 MT
$132,917,271.84$ cubic meters

212,392,287.90 cubic meters
$268,018,438.79$ cubic meters
$26,137,371.74$ cubic meters
$42,591,381.69$ cubic meters
$154,823,958.18$ cubic meters
\$22,222,347.65

Range analysis

The marginal value product on land is less than solution one and solution two. The reason for that is that more land is available than in solution one or solution two. The same idea of interpreting the range analysis used in solution one can be followed here (APPENDIX C).

Because of introducing the B_{3} column (see matrix APPENDIX B) with the new four restraint levels mentioned before, the value of the program increased by 30 percent over that of solution two. Wheat production came to this solution while it is not in solution two. The reasons are because more of the new resources went to wheat and more barley production. Also, more resources shifted from vegetable to grain crop production, levels of growing barley, onions, and Faba-beans are higher than those in solution two because more of the available resources shifted to production of those crops. Level of growing oats is lower than that in solution two because resources are more efficient in barley and wheat production. Remaining activities have equal levels in both solutions because of the upper bounds. For more information, see APPENDIX C.

Solution Four

This solution reports the optimum plan using C_{2} row and B_{1} column. The prices and variable costs in C_{2} row are either higher or lower than those in C_{1} row. The reasons for this change are to examine the effects of price change on the number of activities in solution and their levels, and to find the effect on the objective function.

All the land is used and the marginal value product is $\$ 597.45 /$ hectare.

Crop activities
Barley for grain, P01 75,000.00 hectares
Wheat for grain, P03 31,883.81 hectares
Potatoes, P06 11,000.00 hectares

Onions, P07	$8,923.28$ hectares
Green peppers, P08	$11,636.23$ hectares
Faba-beans, P12	$11,556.67$ hectares

Resources completely used

All the resources are used except the farmers ' own labor in period nine (R10) and maximum labor hire in rows (R68, R69, R72, R74, R75, and R76) are not completely utilized. Commodity buying and selling

Sell barley, P40 187,500.00 MT
Se11 wheat, P42
Se11 potatoes, P45
Sell onions, P46
Se11 green peppers, P47
Se11 Faba-beans, P51
Buy fertilizer, P53
Jan. 1 - Feb. 28 water buy P55

Mar. 1 - Apr. 30 water buy P56

May 1 - Jun. 30 water buy P57

Ju1. 1 - Aug. 30 water buy P58

Sept. 1 - Oct. 31 water buy P59

Nov. 1 - Dec. 31 water buy P60
$110,154,434.66$ cubic meters

Range analysis

The highest marginal value product was on alfalfa transfer for harvest (R50) and the shadow price for the last hectare was $\$ 1518.71$. For more information see APPENDIX C.

As a result of introducing the C_{2} row which contains different variable costs and prices and the B_{1} column (see matrix APPENDIX B), the value of the program decreased by 36 percent from that of solution three. Tomato and oats production dropped out of the plan because the output sale price of tomatoes is very low and resources are more efficient in producing other crops like Faba-beans, green peppers, and onions. Green peppers came into solution. Growing onions level increased in this solution compared to solution three, while growing wheat level decreased in this solution compared to solution three because resources are more profitable in producing some vegetable production than wheat. Growing barley and potato have the same levels in solutions three and four because of the upper bound. For more information see APPENDIX C.

Solution Five
This solution reports the optimum plan between C_{2} row and B_{2} column. The land is completely used and its marginal value product is higher than the last solution $\$ 616.68$ for the last hectare used. Crop activities

Barley for grain, P01
$74,242.60$ hectares
Potatoes for grain, P03 11,000.00 hectares
Onions, P07 9,962.93 hectares
Green pepper, P08
14,619.23 hectares

Faba-beans, P12 10,175.25 hectares

Resources completely used

A11 the available resources are used except farmers' own labor in period nine (R10), tractor supply time (R21), and maximum labor hire in rows ($\mathrm{R} 68, \mathrm{R} 69, \mathrm{R} 72, \mathrm{R} 74, \mathrm{R} 75$, and R 76) are not completely used. Commodity buying and selling

Sell barley, P40 185,606.50 MT
Se11 potatoes, P45 225,500.00 MT
Se11 onions, P46 209,221.36 MT
Sell green peppers, P47 149,116.10 MT
Sell Faba-beans, P51 93,612.34 MT
Buy fertilizer, P53 24,618.91 MT
Jan. 1 - Feb. 28 water buy P55 72,946,314.29 cubic meters

Mar. 1 - Apr. 30 water buy P56
$151,906,893.72$ cubic meters
May 1 - Jun. 30 water buy P57
$177,334,317.57$ cubic meters
Jul. - Aug. 30 water buy P58 49,273,914.18 cubic meters

Sept. 1 - Oct. 31 water buy P59
$28,852,999.99$ cubic meters
Nov. 1 - Dec. 31 water buy P60
$80,777,339.02$ cubic meters

Range analysis

The highest marginal value product is on onion transfer for harvest (R47) and the shadow price for the last hectare is $\$ 1234.54$. For more information see APPENDIX C.

As a result of introducing the C_{2} row and the B_{2} column (see matrix APPENDIX B), the value of the program decreased by 17 percent from that of solution four. Growing wheat and tomato are not in solution because resources are more efficient in producing onions, and green peppers because of high sale prices. Levels of growing onions and green peppers are higher in this solution compared to the one before. Levels of growing barley and Faba-beans are lower than those in solution four because of low prices in C_{2} rows and level of growing potato is the same in both solutions (APPENDIX C).

Solution Six

This solution reports the optimum plan between C_{2} row and B_{3} column. A11 land available is used and the marginal value product for the last hectare is $\$ 522.50$.

Crop activities

Barley for grain, P01 75,000.00 hectares
Wheat for grain, P03 71,813.14 hectares
Potatoes, P06 10,400.35 hectares
Onions, P07 8,670.71 hectares
Green peppers, P08 6,885.80 hectares
Faba-beans, P12 7,229.50 hectares
Resources completely used
All resources are used except farmers' own labor in periods seven and nine (R08 and R10), tractor supply time (R21), and maximum labor hire in rows (R68, R71, R72, R74, and R76) are not all used.

Commodity buying and selling

Sell barley, P40	$187,500,00 \mathrm{MT}$
Sell wheat, P42	$136,444.96 \mathrm{MT}$
Sell potatoes, P45	$213,207.20 \mathrm{MT}$
Sell onions, P46	$182,085.00 \mathrm{MT}$
Sell green peppers, P47	$70,235.18 \mathrm{MT}$
Sell Faba-beans, P51	$66,515.99 \mathrm{MT}$
Buy fertilizer, P53	$37,041.93 \mathrm{MT}$

Jan. 1 - Feb. 28 water buy P55
$119,743,310.55$ cubic meters
Mar. 1 - Apr. 30 water buy P56
$228,190,983.49$ cubic meters
May 1 - Jun. 30 water buy P57
$278,716,791.65$ cubic meters
Ju1. 1 - Aug. 30 water buy P58
$27,274,103.00$ cubic meters
Sept. 1 - Oct. 31 water buy P59
$27,280,120.78$ cubic meters
Nov. 1 - Dec. 31 water buy P60
$145,329,866.54$ cubic meters

Range analysis

The highest marginal value product is on Faba-beans transfer for harvest (R52) and the shadow price for the last hectare is \$1141.27. For more information see APPENDIX C.

As a result of using C_{2} row and B_{3} column (see matrix APPENDIX B), the value of the program increased by 47 percent over that of solution five. Growing tomato is not in the solution because of low product price and the high inputs requirement of the crop. Growing wheat came into
solution because the resources are more efficient in wheat than tomato growing. Growing barley level increased in this solution compared to solution five because of more resources from B_{3} column. Levels of growing potato, onions, green peppers, and Faba-beans decreased compared to solution four because resources are more efficient in growing wheat and barley. For more information see APPENDIX C.

So far most of the interpretation was given on a technical basis but now attention is given to practical ones. The following part of interpretation is of a great concern to decision makers and farmers in the area of study. As mentioned before, most of the land available in the area should go to barley, oats, and wheat production. Those are the major crops consumers demand in the area. Those crops use less water and labor compared to all vegetable crops grown in the area. If advanced mechanization and modern irrigation systems are introduced to the area, production of row crops like peanuts and corn may become profitable. To demonstrate that barley production is more efficient than tomato production, for example, this comparison can be given.

Table 7. A comparison between barley and tomato in resources use

Item	Barley	Tomato
1. Total water requirement per hectare per season	$4,500.00 \mathrm{~m}^{3}$	$6,300.00 \mathrm{M}^{3}$
2. Number of irrigations per hectare per season	23.00	39.00
3. Time for planting one hectare	0.55 hour	10.00 hour

Table 7. (continued)

Item	Barley	Tomato
4. Time for harvesting one hectare	0.73 hour	5,00 hour
5. Time for other field operations per hectare per season	6.00 hour	13.50 hour
6. Capital requirement per hectare per season	\$41.43	\$137.00

From the table above it is clear that tomato uses more resources than barley. This can be generalized to say that vegetable production requires more resources than grain crops. Of course, farmers in the area will base their production on the anticipated output prices without giving much attention to resource conservation. The role of extension people and decision makers is to direct the farmers by demonstrating to them that production of grain crops is more efficient in the long run than production of vegetables if resource conservation is taken into account.

The model in this report is used as a methodology to demonstrate the approximate allocation of resources available in the area. Some of the data are not accurate and can be replaced when the true ones become available.

Possibilities of More Research and Expansion of Model
More research could be done on the area of study to solve the numerous problems existing in the area. For example, more research on
water allocation and raising the efficiency of labor are the most important problems to deal with. The total amount of water in the area and the recharge rate could be found to replace the parametric range analysis used in this report.

The model itself could be extended in many different ways. For example, labor requirement periods could be broken into shorter periods or maybe even on a day-by-day basis. Water requirement periods could be broken into shorter periods also. Different activities for buying and using every type of fertilizer could be used. Finally, more research is still needed to accomplish the best results and advice to give to the decision makers and farmers in the area. In order to have accurate research data, the cooperation of all concerned sectors in the Libyan government is needed.

Recommendations

Several recommendations may be developed from results of two models' application and visits to the area of study. These recommendations include further studies and improved data. Also, tentative recommendations are suggested by the findings but the current data base does not permit their validations because of data qualifications stated earlier in this report. Through further improvement in data quality, these tentative recommendations can be tested and revised accordingly. Until such testing has been performed, the tentative recommendations may be viewed as hypotheses to be tested.

1. Initiate studies of the entire area to identify demands for different crops and to predict the anticipated percentage increase in demands per year. After this is done, land allotment for highly resource consuming crops, especially water consuming, could be applied.
2. With more accurate data the theory and model discussed in previous chapters can be applied successfully to the area of study to solve the problems of resource allocations.
3. Water available in the area can be allocated among crops by a policy which restricts the amounts used for each crop based on the optimum amount needed. A gradual increase in taxes could be levied on extra water used beyond optimum needs of crops.
4. Expand growing barley, oats, and wheat to the upper limits obtained from optimizing the model. Other crops should be grown to the limits indicated in the solutions.
5. Reduce dairy cow production to a minimum because of their huge resource requirements, especially labor.
6. Obtain more information about water and other resource allocations in the area of study.
7. Develop an agricultural education program to suit farmers in the area and to help them pursue their practices efficiently.
8. Introduce a new Agrarian Reform Program with emphasis on land development and improvement to raise the productivity of the area.
9. Introduce the idea of induced technology and induced institutions to help develop the agricultural sector. Induced technology is the kind of technology which is designed to specifically deal with a certain problem. Induced institutions are institutions specifically designed to suit a process of solving a problem or enhancing development.
10. Train more extension people to help the farmers in the area through providing information about efficient agricultural techniques.
11. Demonstrate to farmers on their farms the efficient ways of production and optimum resource allocation particularly water.

CHAPTER VI

SUMMARY

The first chapter of this report is an introduction which deals with water scarcity, the role of water in the Libyan economy, the problem of water allocation among competing uses, objectives of study, the method used in pursuing objectives, and organization of report. Water scarcity is mentioned as an important factor in determining the kinds of crops farmers can grow and the amounts of land used in each crop. Conservation and better allocation are the main two solutions for this problem. The role of water in the Libyan economy is very important. Although all sectors of the economy consume water, some sectors like agriculture, petroleum, construction, industry, and home use are the most demanding sectors.

The available water in the area of study is not efficiently used and the model developed can help in allocating the available supply of water efficiently among the competing crops. The objectives of this study are shown in detail in chapter one but the main ones are to develop a model whereby water can be allocated efficiently and to apply the model in the study area. The report is organized systematically in which every chapter is based on the previous one and every section is based on the previous one also.

Chapter two deals with the theory of water allocation among competing uses. The uses in this study are the crops grown in the area. A hypothetical example of allocating water between two crops is
illustrated and that could be extended to many crops competing for water use.

Chapter three deals with study procedure and development of the model. Linear programming is the technique used in this study to allocate water and some other resources among different activities in the model. A general idea about the use of linear programming, components of linear programming, and assumptions behind using linear programming are stated in this chapter. The model which consists of 73 activities and 76 restraints is developed to fully deal with the situation and to achieve the goals stated before. All restraints and activities are stated in detail in this chapter. Data needs of the model are discussed at the end of this chapter.

Some coefficients used in this model are not accurate enough for use in programs because of the lack of the accurate data. In these instances, proxy data are used. This model serves as a methodology whereby the exact results can be found when the accurate data are used instead of proxy data.

Chapter four deals with the application of the model developed in chapter three. Study area, data collection with limitations, application of the model and results of application are discussed in this chapter. The study area is relatively homogenous and farmers pursue similar agricultural practices. Other data about study are are given in this chapter.

Most of the data were collected during the summer of 1977, but the limitations stated in this section prevented the author from
acquiring accurate data for this model. The model is applied using coefficients obtained from the area of study or Ministries of Development, Planning, Agriculture, Water and Dams, or El-Fateh University. The whole matrix is shown in APPENDIX B. Parametric range analysis is applied to water because the exact supply available in the area is not known. Major results from applying the model are shown in this chapter.

Chapter five states the interpretation of results obtained from runniag the linear programming model. The interpretations attempt to answer the questions raised and to meet the objectives stated in Chapter 1. A general interpretation of the six solutions is given, then details on each solution are stated. Possibilities of more study and extension of the model are given in this chapter. Possible types of recommendations for the public and the farmers in the area are mentioned at the end of Chapter four.

BIBLIOGRAPHY

1. Beneke, R. R. Linear Programming Application to Farm Planning. Revised. Ames, Iowa: Department of Economics, Iowa State University, 1968.
2. Beneke, R. R. and Winterboer, R. Linear Programming Application to Agriculture. Ames, Iowa: Iowa State University Press, 1973.
3. Candler, Wilferd and Musgrave, W. F. A Practical Approach to the Profit Maximization Problem in Farm Management. J. Agricultural Economics 14 (1960): 510-517.
4. Danzing, G. B. Linear Programming and Extension. Princeton, N.J.: Princeton University Press, 1963.
5. Dorfman, Robert. Application of Linear Programming to the Theory of the Firm. Berkeley, Calif.: University of California Press, 1951.
6. Dorfman, Robert, Samuelson, P. A. and Solow, R. M. Linear Programming and Economic Analysis. New York, N.Y.: McGraw Hill, 1956.
7. Ferguson, C. E. Microeconomic Theory. Homewood, Illinois: Richard D. Irwin, Inc., 1966.
8. Gibson, James A. and Timmons, J. F. Information needs and Models for Land Use Planning. Agricultural Economics 58, No. 5, Proceedings Issue (December 1976): 902-908.
9. Gomory, R. E. Outline of an Algorithum for Integer Solutions to Linear Programs. American Mathematical Society Bull. 64, 1978.
10. Groupement D'etude Francais En Libye. The Current Status of Libyan Agriculture. Tripoli: The Government Press, May, 1973.
11. Groupement D'etude Francais En Libye. Technical and Economical Basis of the Program of Farm Irrigation Projects. Tripoli: The Governmental Press, May, 1973.
12. Heady, E. O. Economics of Agricultural Production and Resource Use. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1952.
13. Heady, E. O. and Candler, W. Linear Programming Methods. Ames, Iowa: Iowa State University Press, 1958.
14. Hoglund, C. R. Investment and Annual Costs for Alternative Beef Cattle Feeding Systems. Michigan Agr. Sta. Farm Science Res. Report 7, 1965.
15. James, S. C., Editor. Midwest Farm Planning Manual. 2nd edition. Ames, Iowa: Iowa State University Press, 1968.
16. Johnson, Glenn L. Agricultural Economics, Production Economics, and the Field of Farm Management. Farm Economics 39, No. 3 (1957): 441-450.
17. Libyan Ministry of Agriculture. The Effect of Nitrogen on Forage Crops. Agricultural Research Center 1, No. 1 (September, 1970): 71-87.
18. Libyan Ministry of Agriculture. Effect of $\mathrm{N}-\mathrm{P}-\mathrm{K}$ on Tomato Crops. Agricultural Research Center 1, No. 1 (September, 1970): 99-119.
19. Samuelson, P. S. Foundations of Economic Analysis. Boston, Mass.: Harvard University Press, 1953.
20. Smith, Adam. The Wealth of Nations. Chicago, Illinois: Henry Regny Company, 1953.
21. Timmons, J. F. Economics of Water Management. Proceedings of International Conference of Water for Peace. Washington, D.C.: Government Printing Office, 1967.
22. Timmons, J. F. Policy Framework for Land Resource Use Within the Agricultural Sector. Prepared for the Council for Agricultural Science and Technology (CAST) Report, Land Resource Use and Protection, Report No. 38, 1975.
23. Timmons, J. F. Theoretical Considerations of Water Allocation Among Competing Uses and Users. Farm Economics 38, No. 5 (December, 1956): 1244-1258.
24. Timmons, J. F. Water Allocation: Supply and Demand Relationships. Opportunities for Regional Research on Water Resources Problems, Monograph No. 10, Agricultural Law Center, S.U.I., Iowa City, Sept., 1968.
25. U.S. Agricultural Department in Cooperation with the Office of Utah Engineer. Determining Consumptive Use and Irrigation Water Requirements. U.S.D.A. Technical Bulletin No. 1275, December, 1962.
26. U.S. Department of State. Countries of the World and Their Leaders. Second Edition. Detroit, Michigan: Gale Research Company, Book Tower, 1975.

ACKNOWLEDGMENTS

The author wishes to acknowledge the assistance given by Professor John F. Timmons.

Much appreciation goes to Professor Timmons for his gracious counse1, advice, and understanding. His enthusiasm for his work, his commitment to advance knowledge, and his willingness to impart of his own wisdom without hesitation will serve as a life long example to me.

Professor Roy D. Hickman and Professor D. Starleaf, who also served on my graduate committee, deserve special thanks for their interest in my research and their guidance in the class room.

I thank Professor Michael Boeh1je and Professor Sidney James for their help and advise on the linear programming model.

I thank Professor Kuentin G. Johnson for his help in reviewing my thesis.

I also thank everybody who helped me in finishing this research, especially Mr. James Libbin, Mr. Hassan Maghrabi, and Mr. Loren Tauer for their ideas about the model and the graphs.

APPENDIX A
THE COST - OUTPUT DATA

PERIODS WHERE THE CROPS SHOW THE GREATEST DEMAND FOR LABOR

Crop	Planting	Harvesting
Barley \& wheat	Nov. 1 - Nov. 30	June 15 - July 15
Millet	Oct. 15 - Oct. 31	Jan. 2 - Feb. 28
Corn	Apr. 1 - Apr. 15	July 15 - July 3
Peanuts	Apr. 1 - Apr. 15	July 15 - Aug. 15
Tomatoes	Apr. 1 - Apr. 15	May 31 - Aug. 15
Potatoes	Sept. 1 - Sept. 15	Nov. 15 - Nov. 30
Faba-beans	Feb. 1 - Feb. 15	Apr. 1-Apr. 30
Alfalfa	Planting usually the year around	ng and harvesting a1).
Oats	Oct. 15 - Oct. 31	Jan. 2 - Feb. 28
Onions	Mar. 2 - Mar. 15	July 1 - July 31
Green peppers	Apr. 1 - Apr. 15	May 31 - Aug. 30
Watermelons	Mar. 1 - Mar. 15	June 15 - July 31
Based on tho	ds, the nine labor	aint periods
(shown below) were designed:		
Periods	Days Per Period	Total Labor per Period (hours)
Jan. 1 - Feb. 28	28	19,874
Mar. 1 - Mar. 15	15	10,647
Mar. 16 - Mar. 31	16	11,356
Apr. 1 - Apr. 30	30	21,293
May 1 - May 30	30	21,293
May 31 - Aug. 30	92	65,300

Periods	Days Per Period	Total Labor per Period (hours)
Sept. 2 - Oct. 31	62	44,006
Nov. 1 - Nov. 30	30	21,293
Dec. 1 - Dec. 31	31	22,003
The average amount of labor available for the area per day $=$		
709.78 hours.		

LABOR REQUIREMENTS FOR FIELD PRACTICES PER HECTARE

Practice	Average Amount of Labor Per Hectare (hours)	Number of Men
Seeding and plowing	. 55	1 (using tractor)
Irrigating	. 25	1
Fertilizer spreading or chemical spray	. 21	1 (using a machine)
Harvesting corn, oats, barley, millet	. 73	1 (using tractor)
Harvesting tomatoes, green peppers, beans	5.0^{1}	3
Harvesting potatoes, peanuts	7.0^{1}	5
Harvesting water-melon	4.0^{1}	4
Harvesting alfalfa	10.0	
Harvesting onions	$5.5{ }^{1}$	4

PRICE EXPECTATIONS AS OBTAINED FROM THE AREA

Barley	130/MT	436.8/MT		
Corn	32.8/MT	110.24/MT		
Wheat	170/MT	571.2/MT		
Peanuts	120/MT	403.2/MT		
Tomatoes	20/MT	67.2/mT		
Potatoes	30/MT	100.8/MT		
Onions	25/MT	84.0/MT		
Green peppers	50/MT	168.9/MT		
Watermelons	30/MT	100.8/MT		
Alfalfa	35/MT	117.6/MT		
Millet	53.6/MT	180.0/MT		
Faba-beans	50/MT	168.0/MT		
Oats	$53.6 / \mathrm{MT}$	180.0/MT		
Feed supplement		-	106.7/MT	358.4/MT
Fertilizer		-	80.0/MT	268.8/MT
Custom combining rent for barley, wheat, millet and oats	-	-	5.89/ha	19.8/ha
Custom combining rent for corn	-	-	6.55/ha	22.0/ha
Harvesting one hectare of peanuts or potatoes	-	-	15/ha	50.4/ha
Harvesting one hectare of tomatoes, onions, or watermelon			12/ha	40.3/ha

PRICE EXPECTATIONS AS OBTAINED FROM THE AREA (continued)

	Selling Price		
Harvesting one hectare of green pepper and beans Harvesting one hectare of alfalfa		Buying Price	SD

The requirements per head:

Item		Cost in Do1lars		
Veterinary and Medical			100.5	
Machinery, equipment, power, etc.				
Breeding charges			60.0	
Miscellaneous			20.5	
		Total	395.0	
Receipts				
	Kg/cow	Lb/cow	Revenue \$	$\begin{gathered} \text { Price/ } \\ \text { 1b } \end{gathered}$
Average milk production per cow	4,898	12,000	987.4	8.23
Average cow weight	512	1,254	37.8^{1}	
Total			1025.2	
C_{1} - Row Coefficient			630.2	8.23c
C_{2} - Row Coefficient			570.2	$7.72 ¢$

[^1]
FERTILIZER REQUIREMENTS

Type of Crop	Amount of all Types of Fertilizer (Lb/ha)
Barley	462
Corn	485
Wheat	462
Peanuts	490
Tomatoes	480
Potatoes	495
Onions	460
Green peppers	479
Watermelon	375
Alfalfa	350
Millet	250
Faba-beans	375
Oats	250
average price/lb of different types of fertilizer is $12 c$ in C_{1} in C_{2}.	

Barley

Item	Cost/ha
Seed	$\$ 31.45$
Plowing	1.19
Planting	0.99
Fert. spread	4.90
Machinery	1.05
Cultivating	1.85
Total	$\$ 41.43$

Corn

Seed
Plowing
Planting
Fert. spread
Machinery
Cultivating

Total

Wheat

Seed	$\$ 48.36$
Plowing	1.19
Planting	0.99
Fert. spread	4.90
Machinery	1.05
Cultivating	1.85
Total	$\$ 58.34$

Peanuts
Seed
Plowing
Planting
Fert. spread
Machinery
Cultivating

Total
\$148.24
${ }^{c}$ This is on unshelled basis.

VARIABLE COST AND FIELD OPERATION REQUIREMENTS (Continued)

Tomatoes

Plants	$\$ 33.60$
Plowing	1.19
Planting	25.68
Fert. spread	4.90
Machinery	2.30
Cultivating	3.35
Spraying	4.25
Chemicals	20.08
Total	-
	$\$ 95.35$

Item	Cost/ha
Plants	$\$ 56.96$
Plowing	1.19
Planting	23.99
Fert. spread	4.90
Machinery	2.30
Cultivating	3.35
Spraying	4.25
Chemicals	40.08
Total	$\$ 137.02$

Potatoes

Seed	$\$ 60.48$
Plowing	1.19
Planting	19.80
Fert. spread	4.90
Machinery	2.30
Cultivating	3.35
Spraying	4.25
Chemicals	30.08
Total	$\$ 126.35$

Onions
yield/ha $=30 \mathrm{MT}$
1.19
23.99
4.90
2.30
3.35
4.25
40.08
$\$ 137.02$

Seed
Plowing
lanting
Fert. spread
$\$ 126.35$
$\$ 95.35$

VARIABLE COST AND FIELD OPERATION REQUIREMENTS (continued)
Green Pepper

Item	Cost/ha	
Plants	\$ 36.50	yield $/ \mathrm{ha}=10.2 \mathrm{MT}$
Plowing	1.19	
Planting	24.91	
Fert. spread	4.90	
Machinery	2.30	
Cultivating	3.35	
Spraying	4.25	
Chemicals	30.08	
Total	\$107.48	

Watermelon

Seed
Plowing
Planting
Fert. spread
Machinery
Cultivating
Spraying
Chemicals
Total \$ 90.83
Alfalfa

Seed	$\$ 83.16$
Plowing	1.19
Planting	2.22
Fert. spread	4.90
Machinery	2.60
Spraying	4.25
Chemicals	10.08
Total	$\$ 108.40$

Millet

Seed	\$ 63.84	yield $/ \mathrm{ha}=6 \mathrm{MT}$
Plowing	1.19	
Planting	0.99	
Fert. spread	4.90	
Machinery	1.05	
Cultivating	1.85	
\quad Total	$\$ 73.82$	

Faba-beans

Item	Cost/ha		yield/ha $=9.2 \mathrm{MT}$
Seed	\$	32.26	
Plowing		1.19	
Planting		1.52	
Fert. spread		4.90	
Machinery		1.05	
Chemicals		30.08	
Spraying		1.85	
Total		72.85	
Seed	\$	17.47	yield/ha $=6 \mathrm{MT}$
Plowing		1.19	
Planting		0.99	
Fert. spread		4.90	
Machinery		1.05	
Cultivating		1.85	
Total		27.45	

WATER REQUJREMENTS FOR THE CROPS PER SEASON

Crop Water (cubic meter)/hectare

Alfalfa	12,800	The distribution over the season is
Barley	4,500	arbitrary taking into account the
Corn	6,250	temperature, i.e., more water in hot
Faba-beans	4,599	periods than in cold periods. (Lack
Green pepper	6,205	of detailed data over the season.)
Millet	4,800	
Oats	4,800	
Onion	4,800	The total water requirement for each
Peanuts	5,599	crop is right but the distribution
Potatoes	3,892	is arbitrary, so the coefficients can
Tomatoes	6,300	be replaced later when the actual ones
Watermelon	6,205	are obtained.
Wheat	4,500	

Budgeting of Every Crop

Barley

Growing	VC	$\$ 41.43$
Water	VC	185.35
Fert.	VC	55.44
Harvest	VC	19.80
Labor	VC	3.75
		$\$ 305.77$

Corn

Growing	VC	$\$ 34.62$
Water	VC	178.20
Fert.	VC	58.29
Harvest	VC	22.00
Labor	VC	3.61
		$-\frac{\$ 296.63}{}$

$T R=\$ 443.16 / \mathrm{ha}$
$N R=\$ 146.53 / \mathrm{ha}$
$\mathrm{NR}=\$ 59.32 /$ acre

Wheat

Growing	VC	$\$ 58.30$
Water	VC	185.35
Fert.	VC	55.44
Harvest	VC	19.80
Labor	VC	3.75
		$\$ 322.64$

$T R=\$ 1085 / \mathrm{ha}$
$N R=\$ 762.64 / \mathrm{ha}$
$\mathrm{NR}=\$ 308.76 /$ acre

Peanuts

Growing	VC	$\$ 148.24$
Water	VC	279.95
Fert.	VC	58.80
Harvest	VC	50.40
Labor	VC	15.96
		$\$ 553.35$

Tomatoes

Growing	VC	$\$ 137.00$
Water	VC	314.55
Fert.	VC	57.60
Haryest	VC	40.30
Labor	VC	20.33
		$\$ 569.78$

$$
\begin{aligned}
& \mathrm{TR}=\$ 2016 / \mathrm{ha} \\
& \mathrm{NR}=\$ 1446.22 / \mathrm{ha} \\
& \mathrm{NR}=\$ 585.51 / \mathrm{acre}
\end{aligned}
$$

Potatoes

Growing	VC	$\$ 126.40$
Water	VC	194.60
Fert.	VC	59.40
Harvest	VC	50.40
Labor	VC	18.82
${ } &{\$ 449.62}$		

Onions

Growing	VC	$\$ 95.40$
Water	VC	194.65
Fert.	VC	55.20
Harvest	VC	40.30
Labor	VC	18.82
		$\$ 404.37$

Green pepper
Growing VC Water VC Fert. VC Harvest VC Labor VC

VC

$\$ 107.50$
310.25
57.48
30.20
18.65
$\$ 524.08$

Watermelon

Growing	VC	$\$ 90.89$
Water	VC	310.25
Fert.	VC	33.00
Harvest	VC	40.30
Labor	VC	17.05
		$\$ 491.40$

Alfalfa

Growing	VC	$\$ 108.35$
Water	VC	639.95
Fert.	VC	42.00
Harvest	VC	60.50
Labor	VC	22.81
		$\$ 873.81$

$T R=\$ 2066 / \mathrm{ha}$
$\mathrm{NR}=\$ 1616.78 / \mathrm{ha}$
$N R=\$ 654.57 /$ acre
$\mathrm{TR}=\$ 1764 / \mathrm{ha}$
$\mathrm{NR}=\$ 1359.63 / \mathrm{ha}$
$\mathrm{NR}=\$ 550.46 /$ acre
$T R=\$ 1713.60 / \mathrm{ha}$
$\mathrm{NR}=\$ 1189.52 / \mathrm{ha}$
$N R=\$ 481.59 /$ acre
$T R=\$ 1008 / \mathrm{ha}$
$\mathrm{NR}=\$ 516.60 / \mathrm{ha}$
$N R=\$ 209.15 /$ acre
$T R=\$ 964.32 / \mathrm{ha}$
$N R=\$ 90.51 / \mathrm{ha}$
$\mathrm{NR}=\$ 36.64 /$ acre

Millet

Growing	VC	$\$ 73.80$
Water	VC	240.00
Fert.	VC	30.00
Harvest	VC	19.80
Labor	VC	7.58
		$\$ 371.18$

Beans

Growing	VC	$\$ 72.90$
Water	VC	229.95
Fert.	VC	45.00
Harvest	VC	30.20
Labor	VC	17.89
		$-\frac{\$ 395.94}{}$

Oats

Growing	VC	\$ 27.50
Water	VC	240.00
Fert.	VC	30.00
Harvest	VC	19.80
Labor	VC	7.58
		$\$ 324.88$

$\$ 395.94$
$\$ 324.88$
$T R=\$ 1080 / \mathrm{ha}$
$\mathrm{NR}=\$ 708.82 / \mathrm{ha}$
$N R=\$ 286.97 /$ acre
$T R=\$ 1545.60 / \mathrm{ha}$
$\mathrm{NR}=\$ 1149.66 / \mathrm{ha}$
$N R=\$ 465.45 /$ acre
$T R=\$ 1080 / \mathrm{ha}$
$\mathrm{NR}=\$ 755.12 / \mathrm{ha}$
$\mathrm{NR}=\$ 305.72 /$ acre

APPENDIX B

DATA MATRIX WITH THE COEFFICIENTS, PRICES OF OUTPUTS, VARIABLE COSTS, AND THE RESOURCES AVAILABLE

List of Activities

From P01 to P39 the activity unit is one hectare.
P01 Producing and growing barley
P02 Producing and growing corn
P03 Producing and growing wheat

P04 Producing and growing peanuts

P05 Producing and growing tomatoes

P06 Producing and growing potatoes
P07 Producing and growing onions
P08 Producing and growing green peppers
P09 Producing and growing watermelon
P10 Producing and growing alfalfa
P11 Producing and growing millet for forage
P12 Producing and growing Faba-beans
P13 Producing and growing oats for forage
P14 An activity which permits irrigating one hectare of barley
P15 An activity which permits irrigating one hectare of corn
P16 An activity which permits irrigating one hectare of wheat
P17 An activity which permits irrigating one hectare of peanuts
P18 An activity which permits irrigating one hectare of tomatoes
P19 An activity which permits irrigating one hectare of potatoes
P20 An activity which permits irrigating one hectare of onions
P21 An activity which permits irrigating one hectare of green peppers

P22 An activity which permits irrigating one hectare of watermelon

P23 An activity which permits irrigating one hectare of alfalfa.
P24 An activity which permits irrigating one hectare of millet for forage.

P25 An activity which permits irrigating one hectare of Fababeans.

P26 An activity which permits irrigating one hectare of oats for forage.

P27 An activity which has barley custom-combined and the hay put up by farmers.

P28 An activity which has corn custom-combined and hauling.
P29 An activity which has wheat custom-combined and the hay put up by farmers.

P30 An activity which has peanuts manually picked.
P31 An activity which has tomatoes manually picked.
P32 An activity which has potatoes manually picked.
P33 An activity which has onions manually picked.
P34 An activity which has green peppers manually picked.
P35 An activity which has watermelon manually picked.
P36 An activity which has alfalfa mowed 50 times per year by farmers.

P37 An activity which contains millet custom harvested and baled.
P38 An activity which includes Faba-beans manually picked.
P39 An activity which has oats custom harvested and baled.
P40 Barley selling. The activity unit is one metric ton (2240 1b).

P41 Corn selling. The activity unit is one metric ton.
P42 Wheat selling. The activity unit is one metric ton.
P43 Peanuts selling. The activity unit is one long ton.

P44 Tomato se1ling. The activity unit is one metric ton.
P45 Potato selling. The activity unit is one metric ton.
P46 Onion selling. The activity unit is one metric ton.
P47 Green pepper selling. The activity unit is one metric ton.
P48 Watermelon selling. The activity unit is one metric ton.
P49 Alfalfa selling. The activity unit is one metric ton.
P50 Millet selling. The activity unit is one metric ton.
P51 Faba-beans selling. The activity unit is one metric ton.
P52 Oats selling. The activity unit is one metric ton.
P53 Fertilizer buying. The activity unit is one pound.
P54 Feed supplement buying. The unit of activity is one metric ton.

P55 Water buying in Jan. 1 - Feb. 28. The unit of activity is one cubic meter.

P56 Water buying in Mar. 1-Apr. 30. The unit of activity is one cubic meter.

P57 Water buying in May 1 - June 30. The unit of activity is one cubic meter.

P58 Water buying in July 1 - Aug. 30. The unit of activity is one cubic meter.

P59 Water buying in Sept. 1 - Oct. 31. The unit of activity is one cubic meter.

P60 Water buying in Nov. 1 - Dec. 31. The unit of activity is one cubic meter.

P61 Dairy cow raising and selling. Selling the culled cow and the milk. The activity unit is one cow.

P62 Capital borrowing. The activity unit is one dollar.

The activity unit is one hour.
P63 Labor hiring in Jan. 1 - Feb. 28.

P64 Labor hiring in Mar. 1 - Mar. 15.

P66 Labor hiring in Mar. 16 -Mar. 31.
P67 Labor hiring in May 1 - May 30.
P68 Labor hiring in May 31 - Aug. 30.
P69 Labor hiring in Sept. 1 - Oct. 31.
P70 Labor hiring in Nov. 1 -Nov. 30.
P71 Labor hiring in Dec. 1 - Dec. 31.
P72 Custom-combine hiring. The activity unit is one hour.
P73 Custom-tractor hiring. The activity unit is one hour.
List of restraints
R01 A restraint on land. The B column unit is hectare.
From R02 to R10 the restraint unit is one hour.
R02 A restraint on labor in Jan. 1 - Feb. 28.
R03 A restraint on labor in Mar. 1 - Mar. 15.
R04 A restraint on labor in Mar. 16 - Mar. 31.
R05 A restraint on labor in Apr. 1 - Apr. 30.
R06 A restraint on labor in May 1 - May 30.
R07 A restraint on labor in May 31 - Aug. 30.
R08 A restraint on labor in Sept. 1 - Oct. 31.
R09 A restraint on labor in Nov. 1 - Nov. 30.
R10 A restraint on labor in Dec. 1 - Dec. 31.
R11 A restraint on head space of cows (capital accounting). The restraint unit is one head space.

R12 A restraint on operating capital. The restraint unit is one dollar.

From R13 to R18 the restraint unit is one cubic meter.
R13 A restraint on water demanded by the crops in Jan, 1 Feb. 28.

R14 A restraint on water in Mar. 1-Apr. 30,
R15 A restraint on water in May 1 - June 30.
R16 A restraint on water in July 1 - Aug. 30.
R17 A restraint on water in Sept. 1 - Oct. 31.
R18 A restraint on water in Nov. 1 - Dec. 31.
RJ9 A restraint on the fertilizer available for the crops. The restraint unit is one pound.

R20 A restraint on custom-combine hire. The restraint unit is hour.

R21 A restraint of custom-tractor hire. The restraint unit is hour.

From R22 to R34 the restraint unit is one watered hectare.
R22 A grown barley transfer row.
R23 A grown corn transfer row.
R24 A grown wheat transfer row.
R25 A grown peanut transfer row.
R26 A grown tomato transfer row.
R27 A grown potato transfer row.
R28 A grown onion transfer row.
R29 A grown green pepper transfer row.
R30 A grown watermelon transfer row.
R31 A grown alfalfa transfer row.

R32 A grown millet transfer row.
R33 A grown Faba-beans transfer row.
R34 A grown oats transfer row.
From R35 to R40 the restraint unit is one cubic meter,
R35 A restraint on water in Jan. 1 - Feb. 28.
R36 A restraint on water in Mar. 1 - Apr. 30.
R37 A restraint on water in May 1 - June 30.
R38 A restraint on water in July 1 - Aug. 30.
R39 A restraint on water in Sept. 1 - Oct. 31.
R40 A restraint on water in Nov. 1 - Dec. 31.
From R41 to R57 the restraint unit is one hectare.
R41 A harvested hectare of barley transfer.
R42 A harvested hectare of corn transfer.
R43 A harvested hectare of wheat transfer.
R44 A harvested hectare of peanuts transfer,
R45 A harvested hectare of tomato transfer.
R46 A harvested hectare of potato transfer.
R47 A harvested hectare of onion transfer.
R48 A harvested hectare of green pepper transfer.
R49 A harvested hectare of watermelon transfer.
R50 A harvested hectare of alfalfa transfer.
R51 A harvested hectare of millet transfer.
R52 A harvested hectare of Faba-beans transfer.
R53 A harvested hectare of oats transfer.

From R54 to R66 the restraint unit is one metric ton.
R54 A barley transfer row.

R55 A corn transfer row.

R56 A wheat transfer row.

R57 A peanuts transfer row.

R58 A tomato transfer row.

R59 A potato transfer row.

R60 An onions transfer row.

R61 A green peppers transfer row.
R62 A watermelon transfer row.

R63 An alfalfa transfer row.

R64 A millet transfer row.

R65 A Faba-beans transfer row.

R66 An oats transfer row.

R67 Feed supplement transfer row. The unit is one pound.

From R68 to R76 the restraint unit is one hour.

R68 A restraint on hiring labor in Jan. 1 - Feb. 28.

R69 A restraint on hiring labor in Mar. 1 - Mar. 15.
R70 A restraint on hiring labor in Mar. 16 - Mar. 31.

R71 A restraint on hiring labor in Apr. 1 - Apr. 30.

R72 A restraint on hiring labor in May 1 - May 30.
R73 A restraint on hiring labor in May 31 - Aug. 30.
R74 A restraint on hiring labor in Sept. 1 - Oct. 31.

R75 A restraint on hiring labor in Nov. 1 - Nov. 30.
R76 A restraint on hiring labor in Dec. $1-$ Dec. 30.

Table B-1. The data matrix

	B_{1}	B_{2}	B_{3}	P01	P02	P03	P04
C_{1}				-41.43	-34.62	-58.3	-198.3
C_{2}				-51.43	-44.62	-68.3	-158.3
R01	150,000	120,000	180,000				
R02	19,874	- 19,874	19,874				
R03	10,647	10,647	10,647				
R04	11,356	11,356	11,356				
R05	21,293	21,293	21,293		0.55		2
R06	21,293	21,293	21,293		0.10		0.6
R07	65,300	65,300	65,300				
R08	44,006	44,006	44,006				
R09	21,293	21,293	21,293	0.55		0.55	
R10							
R11							
R12	20,460,000	25,500,000	30,000,000	42.35	35.71	59.21	152.69
R13							
R14							
R15							
R16							
R17							
R18							
R19				462	485	462	490
R20	30,000	50,000	100,000				

P05	P06	P07	P08	P09	P10	P11	P12	P13
-137	-126.9	-95.4	-107.5	-90.8	-108.4	-73.8	-72.9	-27.5
-147	-136.4	-105.4	-117.5	-100.8	-118.4	-83.8	-82.9	-37.5
					0.55		3.5	
					0.10	0.20	0.35	0.20
		3.5		2.9	0.10	0.15	0.35	0.15
4.1		0.15	4.1	0.15	0.10	0.35		0.35
0.3		0.20	0.3	0.25	0.10	0.25		0.25
					0.10	0.30		0.30
	0.38				0.10	0.73		0.73
					0.10			
					0.10			

$\begin{array}{lllllllll}144.39 & 132.73 & 101.82 & 114.87 & 96.37 & 110.67 & 77.15 & 79.96 & 30.83\end{array}$

480
495
460
479
375350
250375
250

Table B-1. (continued)

	P14	P15	P16	P17	P18	P19	P20	P21
C 11	-.02	-.02	-.02	-.02	-.02	-.02	-.02	-.02
C $_{2}$	-.02	-.02	-.02	-.02	-.02	-.02	-.02	-.02
R01								
R02	0.10		0.10					
R03	0.10	0.10	0.10	0.10	0.10		0.15	0.10
R04	0.10	0.10	0.10	0.10	0.10		0.15	0.10
R05	0.15	0.25	0.15	0.25	0.25		0.25	0.25
R06	0.20	0.45	0.20	0.45	0.45		0.45	0.45
R07		0.20		0.20	0.20		0.20	0.20
R08							0.25	
R09	0.25		0.25			0.10		
R10	0.10		0.10			0.10		
R11								
R12	186.69	179.4	186.7	281.1	315.7	195.2	196.1	311.4
R13	722		722					
R14	1295	876	1295	1269	1370		1319	1041
R15	1690	1782	1690	2100	2805		1552	2490
R16		906						
R17								
R18	900							

P22	P23	P24	P25	P26	P27	P28	P29	P30
-. 02	-. 02	-. 02	-. 02	-. 02	-19.8	-22	-19.8	-50.4
-. 02	-. 02	-. 02	-. 02	-. 02	-20.8	-23	-20.8	-51.4
	. 05	0.25	0.10	0.25				
0.15	0.28		0.20					
0.15	0.28		0.25					
0.25	0.28		0.15					
0.45	1.66							
0.20	5.01							
	0.28	0.35		0.35				
	0.28	0.28		0.28				
	0.28	0.28		0.28				
311.7	654.1	242.9	230.7	242.9	21.11	23.34	21.11	94.04
	1448	2082	1901	2082				
1979	1679		2698					
2474	2674							
1752	3381.							
	2099	1211	1211					
	1518	1507		1507				

Table B-1. (continued)

	P31	P32	P33	P34	P35	P36	P37	P38
C_{1}	-40.3	-50.4	-40.5	-30.2	-40.3	-60.5	-19.8	-30.7
C_{2}	-41.3	-51.4	-41.3	--31.2	-41.3	-61.5	-20.8	-31.7
R01								
R02						0.25	0.78	
R03						0.30		
R04.						0.20		
R05						0.50		
R06						0.80		
R07	7		8.5	6	6	0.78		
R08						0.40		
R09						0.30		
R10						0.30		

R11
R12
$82.36 \quad 92.36$
$84.9 \quad 70.6$
$80.7 \quad 81.4$
$21.11 \quad 70.6$

R13
R14
R15
R16
R17
R18
R19
R20

P39	P40	P41	P42	P43	P44	P45	P46	P47	P48
-19.8	436.8	110.2	571.2	403.2	67.2	100.8	84	168	100.8
-20.8	403.2	84	537.6	336	33.6	67.2	67.4	134.4	67.2
0.78									

21.14

Table B-1. (continued)

	P49	P50	P51	P52	P53	P54	P55	P56	P57
C_{1}	117.6	180	168	180	-. 12	-358.4	-. 03	-. 03	-. 03
C_{2}	67.2	113.3	134.4	113.3	--. 14	-336	-. 04	-. 04	-. 04
R01									
R02									
R03									
R04									
R05									
R06									
R07									
R08									
R09									
R10									
R11									
R12									
R13							-1		
R14								-1	
R15									-1
R16									
R17									
R18									
R19					-1				
R20									

P58	P59	P60	P61	P62	P63	P64	P65	P66
-. 03	-. 03	-. 03	630.2	-. 08	-6.72	-8.4	-8.4	-8.4
-. 04	-. 04	-. 04	570.2	-. 05	-8.4	-10.08	-10.08	-10.08
			. 002					
			8.82 -		-1			
			6.71			-1		
			6.71				-1	
			9.41					-1
			7.42					
			10.26					
			6.82					
			4.42					
			4.42					
			1					
			10.35					
-1								
	-1							
		-1						

Table B-1. (continued)

	P67	P68	P69	P70	P71	P72	P73
C_{1}	-13.4	-13.4	-10.08	-10.08	-6.72	-13.4	-12.3
C_{2}	-13.4	-13.4	-11.76	-11.76	-8.4	-16.8	-13.4
R01							
R02							
R03							
R04							
R05							
R06	-1						
R07		-1					
R08			-1				
R09				-1			
R10					-1		
R11							
R12							
R13							
R14							
R15							
R16							
R17							
R18							
R19							
R20							

Table B-1. (continued)

	B_{1}	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$	P 01	P 02	P 03	P04	P05
R21	105,000	115,000	150,000	1		1		
R22				-1				
R23				-1				
R24					-1			
R25						-1		
R26							-1	

R27

R28

R29
R30

R31

R32

R33

R34
R35 300, 000, $000300,000,000300,000,000$
R36
"
$"$

R37

R38

R39

R40
"

11
"
"
"
"
"

R41

Table B-1. (continued)

	P18	P19	P20	P21	P22	P23	P24	P25	P26	P27	P28	P29
R21												
R22												
R23												
R24												
R25												
R26	1											
R27		1										
R28			1									
R29				1								
R30					1							
R31						1						
R32							1					
R33								1				
R34									1			
R35												
R36												
R37												
R38												
R39												
R40												
R41										1		

Table B-1. (continued)

P42	P43	P44	P45	P46	P47	P48	P49	P50	P51	P52

R21

R22

R23

R24
R25
R26

R27

R28
R29
R30
R31

R32
R33

R34

R35

R36
R37
R38
R39
R40

R41

Table B-1. (continued)

	P65	P66	P67	P68	P69	P70	P71	P72	P73
R21									-1

R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R39
R40
R41

Table B-1. (continued)

B_{1}	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$	P 01	P 02	P 03	P 04	P 05	P 06	P 07	P 08	P 09

R42
R43
R44
R45
R46
R47
R48
R49
R50
R51
R52
R53
R54
R55
R56
R57
R58
R59
R60
R61
R62

P10	P11	P12	P13	P14	P15	P16	P17	P18	P19	P20	P21
					-1						
						-1					
							-1				
								-1			
									-1		
										-1	
											-1

Table B-1. (continued)

P22	P23	P24	P25	P26	P27	P28	P29	P30	P31	P32

R42
R43
R44
R45
R46
R47
R48
R49 -1
R50 -1
R51 -1
R52 -1
R53
-1
R54
R55
-4.02
R56
-1.9
R57
-2.4
R58 -30

R59
-20.5

R60
R61
R62

1
1
1
1
1
1
1
1
1
1
1

Table B-1. (continued)

P45	P46	P47	P48	P49	P50	P51	P52	P53	P54	P55

R42

R43
R44

R45
R46
R47
R48

R49

R50
R51
R52
R53
R54
R55
R56
R57
R58
R59 1
R60 1
R61
1

R62

Table B-1. (continued)

| P68 | P69 | P70 | P71 | P72 | P73 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

R42
R43
R44
R45
R46
R47
R48
R49
R50
R51
R52
R53
R54
R55
R56
R57
R58
R59
R60
R61
R62

Table B-1. (continued)

B_{1}	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$	P 01	P 02	P 03	P 04	P05	P06	P07

R63
R64
R65
R66
R67
R68 60,000 $\quad 60,000-60,000-$
R69 20,000 10,000 10,000
R70 40,000 40,000 40,000
R71 $120,000 \quad 120,000 \quad 120,000$
R72 25,000 25,000 25,000
R73 150,000 150,000 150,000
R74 30,000 30,000 30,000
R75 170,000 170,000 170,000
$\begin{array}{llll}\text { R76 } & 1000 & 1000 & 1000\end{array}$
R77
R78
R79
R80

Table B-1. (continued)

P20	P21	P22	P23	P24	P25	P26	P27	P28	P29	P30

R63
R64
R65

R66
R67
R68
R69
R70
R71
R72
R73
R74
R75
R76
R77
R78
R79
R80

P31	P32	P33	P34	P35	P36	P37	P38	P39	P40	P41	P42
					-8.2						
						-6					
							-9.2				
								-6			

Table B-1. (continued)

P43	P44	P45	P46	P47	P48	P49	P50	P51	P52	P53

R63
R64
1
R65
1

R66
1

R67
R68

R69

R70
R71
R72

R73
R74
R75
R76
R77
R78
R79
R80

Table B-1. (continued)

| P66 | P67 | P68 | P69 | P70 | P71 | P72 | P73 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

R63
R64
R65
R66
R67
R68
R69
R.70

R71 1
R72 1
R73 1
R74 1
R75 1
R76 1
R77
R78
R79
R80

APPENDIX C

Table C－1．Resources（rows）used in sciution one

NUMEER	．．PCA．	＋T	．．．ACtivitr．．．	Stack ACtivity	．．．OUER LIMIT．	．．UPPER LIMII．	－DUAL ACTIVITY
1	61	95	14．50216く5．67E	$145021025.675-$	NGNE	ACAE	1.00000
2	C 2	35	J¢171064．85：1	75171064．8511－	NONE	NCNE	．
3	RO1	ul	150200.00020	－	NCNE	150000.00000	699．3472P－
4	202	UL	19874.00000	－	NONE	10874.00000	6．72000－
5	203	u	10647．00000	．	NCNE	10647.00000	ミ．40000－
6	204	Ui	11356.00000	．	NONE	11356.00000	110．44750－
7	205	u	21293.00000	．	nane	21253.00000	$70.66357-$
3	F06	U	21293.00000	．	NCNE	21253.00000	$13.44000-$
9	R07	\cdots	65300.00000	．	NUNE	55300.00000	$42.54823-$
10	208	儿	$44) 06.05020$	．	NUNE	44006.00000	10．58700－
11	90こ	u	21293．00000	－	NONE	21293.00000	$10.08000-$
12	F10	3.5	15471.91959	6531．08041	NCNE	22003.00000	．
13	R11	5 S	－	1000.00000	NONE	1000.00000	－
14	212	UL	20460000.0000	．	NCNE	20460000．0000	．08000－
15	813	UL	－	．	NONE		． $03000-$
16	414	ul	－	．	NONE	．	． $03000-$
17	215	UL	－	－	NCNE	．	． $03000-$
18	R16	UL	－	．	NGNE		．03000－
19	R17	ul	－	．	NCNE	．	．03000－
20	R18	UL	．	．	NONE	－	． $03000-$
21	R19	UL	－	－	NONE	－	． $12000-$
22	220	UL	30000.00000	－	nune	30000.20000	13．40000－
23	R21	UL	105000.00000	．	NONE	105000.00000	$12.30000-$
24	R22	J	－	．	NENE	－	942．3940t－
25	R2E	Ul	－	－	NONE	．	21．96032－
26	224	UL	－	－	NONE	．	235．67408－
27	Q25	ul	－	－	NCNE	－	$333.97226-$
28	F26	ul		－	NCNE	．	$1413.15639-$
29	227	UL	－	－	NONE	－	1202．12300－
30	229	UL	．	－	NCNE	－	$1257.54903-$
31	225	u	－	－	nCNE		$1167.27152-$
32	230	U	．	．	nune	＊	1177．11645－
33	マ31	UL	－	－	NONE	－	911．32435－
34	R32	UL	．	－	nCNE	．	968．38720－
35	233	UL	－	－	NCNE	＊	838．76275－
36	9 34	UL	．	－	NCNE	－	$368.3848 ว-$
37	R 35	95	125648381.027	174351618.972	NONE	295995955．55\％	－
38	236	35	169856404.182	130143595.817	NONE	2099999？¢．c¢	
39	837	95	154007852.831	105992147.169	NONE	250999959．950	
40	238	35	34548352.6660	205451647.333	NONE	25c995950．079	
41	239	35	53073000.0000	246526995．599	NJNE	290959955．590	－
42	R40	35	123046276.293	176953723.706	NUNE	259¢7955c．950	－
43	Q41	ve	－	－	ACNE	－	$1023.92359-$
4.4	842	UL	－	，	NCNE	－	$335.25902-$
45	24.3	儿	－	．	NONE	．	$1217.20357-$
46	244	UL	－	．	NENE	－	－67．37076－
47	Q4 45	UL	－	－	NONE	－	：071．27357－
48	F4E	ル	－	．	NCNE	－	1530．05120－
49	247	U	．	．	NUNE	－	$1040.34613-$

NUMEER	. . . ROW . .	A T	...ACTIVITY...	SLACK ACTIVITY	..lomer	LIMIT.	. . upper linit.	- jual activitr
50	R48	Ul	-	-		NONE	-	1422.46422-
51	947	UL	-	-		NGNE	.	$1385.95622-$
52	250	uL	-	.		NONE	-	1641.65771 -
53	R51	UL	.	.		NONE	.	$1037.86560-$
54	252	UL	-	.		NGNE	-	$1085.77213-$
55	R53	ul	-	.		NONE	.	$1039.86720-$
56	754	UL	.	.		NONE	.	$436.80000-$
57	255	Ul	-	-		NONE	-	$110.24000-$
58	RS6	ul	.	-		NCNE	.	$571.20000-$
59	257	ul	-	-		NCNE	-	$403.20000-$
60	R58	UL	.	-		NONE	-	67.20000-
61	R59	UL	-	-		NONE	.	100.80000-
62	R60	UL	-	-		nune	-	$84.00000-$
63	R61	UL	-	*		NONE	-	165.00000-
64	R62	uL	*	-		NONE	-	$163.8000 \mathrm{C}-$
65	R63	UL	-	-		NONE	.	$117.60000-$
66	R64	UL	-	-		NONE	-	$180.00000-$
67	R65	UL	-			NONE	-	168.00000-
68	R66	u	-			NONE		$180.00000-$
69	R67	35	-			NONE		.
70	R68	35	48651.22719	11348.77281		NONE	60000.00000	.
71	R69	35	10584.03726	3415.5E274		NONE	2000.00000	.
72	R70	UL	40000.00000	-		NONE	40000.00000	102.04760-
73	R71	UL	120000.00000			NONE	120060.00000	62.26357-
74	R72	BS	15680.75556	9319.24444		NONE	25000.00000	-
75	273	UL	150000.00000			NGNE	150000.00000	29.10823-
76	F74	95	22144.00000	7856.00000		NUNE	3000C.00000	29.10823
77	275	$3 \leqslant$	132592.35671	37417.64329		NONE	1700 CO 0.00000	-
78	276	35		1000.00000		NGNE	1000.00000	-

Table C-2. Activities (columns) used in solution one

NUMBER	- COLUMN.	AT	...ACTIVITY...	..INPUT COST..	..lener limit.	. .upper linti.	-REDUCES COST.
79	-01	JL	75000.00000	$41.43000-$	-	75000.00000	24.54280
80	P02	LL	.	$34.62000-$.	NONE	615.37473-
81	P03	35	12717.19589	58.30000-	-	ncae	.
82	POA	LL	.	148.30000-	.	ncae	$734.08176-$
83	P05	UL	10000.00000	$137.00000-$	-	10000.00000	213.90377
84	P06	UL	11000.00000	126.40000-	.	11000.00000	869.05632
85	P07	35	3737.47623	95.40000-	.	NCAE	.
36	P08	35	1667.40911	$107.50000-$.	NCAE	-
87	POO	35	-	90.80000-	-	NCAE	
89	210	35	.	105.35000-	.	ncne	-
89	P11	LL	-	$73.80000-$	-	NCAE	$19.69634-$
90	P12	as	10875.91878	$72.90000-$.	NCNE	.
91	P13	UL	20000.00000	27.50000-	.	20000.00000	30.30685
92	P14	95	75000.00000	. $02000-$.	NCNE	30.3068
93	P15	95	.	. $02000-$	-	ncae	.
94	P16	35	12719.19583	. $02000-$	-	NCNE	-
95	P17	35	-	- $22000-$,	NCAE	-
96	P19	95	10000.00000	. $02000-$.	NCNE	.
97	P19	95	11000.00000	. $02000-$.	NCNE	
98	P20	35	8737.47623	. $02000-$	-	NCAE	-
59	P21	85	1667.40911	. $02000-$.	NCNE	-
100	P22	LL	.	- $22000-$.	ncne	52.31532-
101	P23	as	-	. $02000-$.	NCAE	-
102	P24	35	.	. $02000-$	-	NCAE	.
103	225	35	10375.71278	. $02000-$	-	ACAE	-
104	226	35	20000.00000	. $22000-$.	ncne	-
105	P27	35	75000.00000	19.80000-	.	ncne	-
106	P28	35	-	22.00000-	.	NCAE	.
107	P29	35	12717.19588	$17.80000-$	-	NCAE	.
108	P30	35	-	50.40000-	-	NCAE	-
107	P31	35	10000.00000	$40.30000-$	-	NGNE	.
110	P32	3 s	11000.00000	$50.40000-$.	NENE	.
111	P33	35	3737.47623	$4.2 .30000-$.	NCNE	-
112	P34	35	1667.42911	$30.20600-$		NCAE	-
113	P35	35	.	$40.30000-$	-	NCAE	-
114	P36	LL	-	$60.50000-$		ACAE	$257.16903-$
115	P37	3ミ	-	19.80000-	.	NONE	.
116	P38	35	10875.91873	$30.20000-$.	NCAE	.
117	P39	35	20000.00000	17.80000-	-	NCAE	-
118	P40	35	187500.00000	436.80000	.	NCAE	.
119	P4 1	55	崖	110.24000	.	NCAE	.
120	P42	35	24166.47218	571.20000	.	NCNE	-
121	P43	35	-	403.20000	.	NEAE	-
122	P44	35	300000.00000	67.20000	.	NCNE	-
123	245	35	225500.02000	100.80000	-	NCAE	*
124	046	35	123487.0007%	84.00000	-	NCAE	.
125	347	35	17007.57293	158.00000	-	NCNE	*
126	$\mathrm{PA8}$	35	-	158.80000	-	NCAE	.
127	240	33	-	117.60000	*	NCAE	,

NUMBER	.CCLUMN.	$4 T$...ACTIVITY...	.. InPut cost..	...lomer limit.	. . UPPER LIMIt.	.RECUCEC COST.
128	P50	$3 \leq$	-	180.00000	-	NCNE	-
129	P51	35	100058.45277	168.00000	-	ACNE	-
130	P52	35	120000.00000	180.00000	-	NCNE	-
131	P53	35	64667666.0687	. $12000-$	-	NONE	-
132	P54	LL	-	358.4C000-	-	NCAE	$358.40000-$
133	P55	35	125648381.027	. $03000-$.	NONE	.
134	F56	35	169856404.182	. $03000-$.	NONE	-
135	257	95	154007852.831	. $03000-$.	NCNE	-
136	P58	35	34548352.6661	. $03000-$	-	NCAE	-
137	P59	35	53073000.0000	. $03000-$.	NCNE	-
138	P60	35	123046276.293	.03000-	-	NCNE	-
139	P61	LL	-	630.20000	-	NCNE	$3302.00954-$
140	P62	BS	25962687.1172	. $08000-$	-	NGAE	-
141	P63	BS	48651.22719	$6.72000-$.	NONE	-
142	P64	BS	10584.03726	$8.40000-$	-	NONE	.
143	P65	BS	40000.00000	$8.40000-$	-	NCAE	-
144	P66	35	120000.00000	$8.40000-$	-	NCNE	.
145	P67	BS	15680.75556	13.44000-	-	none	-
146	P6E	35	150000.00000	$13.44000-$.	NCAE	.
147	P69	35	22144.00000	10.03000-	-	NCAE	-
148	P70	35	132582.35671	$10.08000-$	-	NCAE	-
149	P71	LL	,	6.72000-	.	NCAE	$6.72000-$
150	P72	35	77719.19588	13.40000-	-	NONE	-
151	P73	35	2719.19588	12.30000-	.	NOAE	-

Table C-3. Range analysis for solution one (rows at limit level)

numetr	...ñ..	AT	...activity....	Slack hctivity	. .Laver limit. .. Upper limit.	LOBER ACTIVITY UPPER ACTIVITY	$\begin{aligned} & \hline \text {... Unit cost.. } \\ & \text {....Unit cost.. } \end{aligned}$..UPDER COST.. .. Laver cest..	LIMITING FRCCESS.	${ }_{\text {at }}^{\text {at }}$
3	RO1	UL	149793.95718	-	none	147500.78550	699.34501-		P73	LL
					147999.95718	166765.cec 11	699.34901		P34	4
-	R02	ul	19373.99681	-	NONE	8525.22451	$6.72000-$		R68	u.
					17873.99681	68525.195cz	6.72000		P63	LL
5	203	u	10646.99190	-	nome	1231.03328	8.40000-		R69	ul
					10646.99190	21231.02136	8.40000		P64	LL
6	Roa	u	11355.99253	-	nCNE	22531.15364-	110.44757-		P33	12
					11355.97258	17837.45277	110.44757		P34	LL
7	ROS	UL	21292.99217	-	ACme	19113.15118-	70.66357-		P34	LL
					21292.99217	38251.55472	70.66357		P73	LL
8	R 26	UL	21292.98753	-	nowe	11973.74411	$13.44000-$		$\text { A } 72$	uL
					21292.98753	36973.73446	13.44000		267	4
9	207	u	65290.98416	-	NONE	54367.50753	$42.54822-$		P34	4.
					65299.98416	110427.26764	42.54822		P73	4
10	ROd	u	44005.93609	-	NONE	36149.08760	1c.08000-		E74	ul
					40005.98608	E6149.9ESE0	10.08300		PST	LL
11	ROS	UL	21292.98589	-						
				-	21292.98589	$153 \mathrm{a} 5 \mathrm{~L} .22 \mathrm{Cz2}$	10.08000		p70	4
14	212	UL	26459984.2382	-	NONE	INFINITV-	.08000-		nome	
				-	20459584.2332	46422673.03e0	. 08000		P62	LL
15	R13	J	*	-	none	174351552.255-			$\text { ค } 35$	
						$125648353.4 \in 7$	$\text { -c } 300 \mathrm{C}$		P55	4
15	R14	UL	-	-	none	$130143549.977-$			R36	UL
						$169856332 \text {. } 550$	$.03000$		P56	L
17	815	UL	-	-	Acme	$105992054.7 \text { \&1- }$	$.03000-$		R37	u.
						194007688.265	$.0300 \mathrm{C}$		P57	4
18	R16	$J L$	-	-					838	
						34548321.2471	$.03000$		P58	4
19	R17	UL	-	-	ncne	24ES26975.750-	.03000-		F39	uL
						53072968.50tt	. 03000		P50	LL
20	R18	UL	-	-	none	176553692.t85-			P4O	UL
						$123046255 . e 83$	$.03000$		PSO	L

number	. . . RC. ${ }^{\text {. }}$	${ }^{4 T}$...ACtIVITY...	Slack activity	..LOMER Limit. . oupper limit.	$\begin{aligned} & \text { LOWER ACTIVITY } \\ & \text { UPDER ACTIVIIY } \end{aligned}$	$\begin{aligned} & \hline . . \text { UnIT } \operatorname{cosT} . . \\ & \ldots \text { UNIT } \operatorname{CCST} . . \end{aligned}$	$\begin{aligned} & \text {..UPPER COST. } \\ & \text {..LOWEF COST.. } \end{aligned}$	LIMITING PROCESS.	$\begin{aligned} & A T \\ & A T \end{aligned}$
21	R19	u	-	-	- none	$\begin{aligned} & \text { TNFINITY- } \\ & \text { OADETA19. } 3544 \end{aligned}$	$\begin{aligned} & .12000- \\ & .12000 \end{aligned}$		PS3 NONE	4.
22	520	UL	29999.99462	*	$\begin{array}{r} \text { NONE } \\ 29999.90462 \end{array}$	$\begin{array}{r} \text { INFINITY- } \\ 107719.1 \in E E 0 \end{array}$	$\begin{aligned} & 13.40000- \\ & 13.40000 \end{aligned}$		P72	4
23	021	UL	104999.99504	*	$\begin{array}{r} \text { NCNE } \\ 10.999 .90504 \end{array}$	$\begin{array}{r} \text { INFINITY- } \\ 107719.17641 \end{array}$	$\begin{aligned} & 12.30000- \\ & 12.30000 \end{aligned}$		p73	LL
24	222	ul	-	*	NONE	$\begin{aligned} & 30885.69556- \\ & 16769.11525 \end{aligned}$	$642.39412-$ 842.39412		P73	LL
25	223	ul	-	-	- none	$12160^{\circ} 62629$	$219.66033-$ 219.86033		P28 P34	$\begin{aligned} & \mathrm{LL} \\ & \mathrm{LL} \end{aligned}$
23	224	ul	-	-	none	$\begin{aligned} & 11689 . \operatorname{ce854-} \\ & 16769.11525 \end{aligned}$	$835.67413-$ 835.67413		P16 P34	$\underset{L L}{L}$
27	225	U	*	-	- ncme	1305.216:5	$333.97225-$ 333.97225		$\begin{aligned} & \mathrm{PA} 3 \\ & \mathrm{P} 34 \end{aligned}$	LL
28	226	$u \mathrm{~L}$	*	-	- none	$\begin{aligned} & 5539.1 e t \geq 5- \\ & 1525.65158 \end{aligned}$	$1413.15676-$ 1413.15896		P73	LL
29	427	\cdots	-	-	- none	$\begin{aligned} & 10757.58527- \\ & 5270.09643 \end{aligned}$	$1462.12884-$ 1002.12504		P19 R75	LL
30	92E	UL	-	-	- ncme	$5794.51164-$ 1678.07 c3	$1<57.94925-$ 1257.04928		P73	LL
31	529	UL	-	-	- mCNE		$1167.27154-$ 1167.27154		P73	$\begin{aligned} & 4 \\ & 4 \end{aligned}$
32	830	ul	-	-	- nCNE	a7ej.3072t-	$1177.11649-$ 1177.11648		P73	$\begin{array}{ll} L L \\ L \end{array}$
33	231	μ	-	-	- none	2678.554E7-	$911.32441-$ 911.32441		P73	$\frac{L L}{L L}$
34	532	UL	*	-	NONE	11012.21844	$868.38732-$ 868.38732		250 $\mathbf{R 6 8}$	uL_{4}
35	833	s	-	-	NCNE	$\begin{aligned} & 2643,66 e>1- \\ & \text { esco.23ese } \end{aligned}$	$\begin{aligned} & 888.76206- \\ & 888.76260 \end{aligned}$		P73	$\frac{\mathrm{LL}}{\mathrm{LL}}$
36	-34	u	-	-	NONE	$\begin{aligned} & 19990.98754- \\ & 11019.21644 \end{aligned}$	$568.38494-$ 368.38494		P39 R68	$\frac{L L}{L}$
43	Ral	ul	*	-	. NONE	$\begin{aligned} & 5785 E . c e 320- \\ & 14015.4 \text { AC } 35 \end{aligned}$	$\begin{aligned} & 1023.02364- \\ & 1023.92364 \end{aligned}$		$\begin{aligned} & \text { p73 } \\ & \text { p34 } \end{aligned}$	$\begin{aligned} & L 2 \\ & L 2 \end{aligned}$

number	...80...	$4{ }^{*}$...activitr...	SLACX ACtivity	$\begin{aligned} & \text { OLOVER LIMIT. } \\ & \cdots \text { UOPER LIMIT. } \end{aligned}$	$\begin{aligned} & \text { LOUER ACTIVITY } \\ & \text { UPOER ACTIVITY } \end{aligned}$	$\begin{aligned} & \hline \text {... Unit cost. } \\ & \text {.... Unit cost. } \\ & \hline \end{aligned}$	$\begin{aligned} & \text {. URPER COST. } \\ & \text {. UJUER CCST. } \\ & \hline \end{aligned}$	LIMITING PROCESS.	$\begin{aligned} & A T \\ & A T \end{aligned}$
4	R. 2	μ	-	-	NGNE	$13665^{\circ} \text {.osse }$	$\begin{aligned} & 385.25907 \text { - } \\ & 385.25907 \end{aligned}$		$\begin{aligned} & \text { P29 } \\ & \text { P34 } \end{aligned}$	L
45	* 43	vi	-	-	NONE	$\begin{aligned} & 12142.25134- \\ & 14015.48 c 25 \end{aligned}$	$\begin{aligned} & 1017.20356- \\ & 1017.20356 \end{aligned}$		$\begin{aligned} & 542 \\ & \text { P34 } \end{aligned}$	$\underset{L}{L}$
46	Ras	uL	*	-	- ncme	1366.50563	$\begin{aligned} & 569.37101- \\ & 569.37101 \end{aligned}$		$\begin{aligned} & \text { P43 } \\ & \text { P34 } \end{aligned}$	4 LL
47	545	UL	-	-	nCme	$\begin{aligned} & 6447.04361- \\ & 1561.72546 \end{aligned}$	$1671.27359-$ 1671.27359		$\begin{aligned} & \text { P73 } \\ & \text { P34 } \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$
48	RAE	ul	-	-	nCNE	$\begin{gathered} 10959.48927- \\ 5345.37235 \end{gathered}$	$\begin{aligned} & 1938.05060- \\ & 193 \mathrm{e} .05060 \end{aligned}$		$\begin{aligned} & \text { P45 } \\ & \text { R } 75 \end{aligned}$	LL
49	Pa^{-}	UL	*	-	- MONE	$\begin{aligned} & 6542.965 \hat{2} 3- \\ & 1681.858 \mathrm{cs} \end{aligned}$	$\begin{aligned} & 1440.34630- \\ & 1440.3463 \mathrm{C} \end{aligned}$		$\begin{array}{r} 073 \\ 834 \end{array}$	LL
50	R4s	ul	-	-	NCNE	$\begin{aligned} & 7521.55059- \\ & 1822.01351 \end{aligned}$	$1422.46428-$ 1422.46428		$\begin{aligned} & p 73 \\ & \text { POB } \end{aligned}$	$\begin{array}{ll} \mathrm{LL} \\ \mathrm{LL} \end{array}$
51	R49	ul	-	-	- NONE	$1 \mathrm{E22.0126} \mathrm{\%}$	$1325.95626-$ 1385.95626		$\begin{aligned} & \mathrm{P} 48 \\ & \text { P34 } \end{aligned}$	$\begin{array}{ll} L L \\ L \end{array}$
52	Pso	u	-	*	. none	3051.0cFeo-	$1661.25784-$ 1641.85754		$\begin{aligned} & \text { P34 } \\ & \text { p10 } \end{aligned}$	LL
53	R51	u	-	-	nCNE	$14547.6 \text { FeES }$	$1035.26777{ }^{\text {a }}$ 1035.86677		$\begin{aligned} & \text { P50 } \\ & \text { F6B } \end{aligned}$	$\underset{L L}{L L}$
54	R52	ul	-	-	- ncae	$\begin{aligned} & 2826.45480- \\ & 6734.35624 \end{aligned}$	$\begin{aligned} & 1085.77217- \\ & 1085.77217 \end{aligned}$		$\begin{aligned} & p 72 \\ & \text { p34 } \end{aligned}$	$\begin{aligned} & L L \\ & L L \end{aligned}$
55	$0 \leq 3$	u	-	-	nden	$18799.58754-$ 14540.69685	$1039.86739-$ 1039.86739		$\begin{aligned} & \text { P52 } \\ & \text { R68 } \end{aligned}$	L
56	55.	u	-	-	NCNE	$\begin{gathered} 187097 . e 5265- \\ \text { INFINITY } \end{gathered}$	$\begin{aligned} & 436.80025- \\ & 436.90025 \end{aligned}$		P4O NOME	LL
57	25s	ul	-	-	NCNE	INFINITY	$\begin{aligned} & 110.24002- \\ & 110.24002 \end{aligned}$		$B_{4} 1$ ncae	L
58	P56	ul	-	-	NONE	$\begin{gathered} 2 A 166.46711- \\ \text { INFINITY } \end{gathered}$	$\begin{aligned} & 571.10996- \\ & 571.19596 \end{aligned}$		P4 2 nome	4
59	R57	ul	*	-	NONE	INFINITY	$\begin{aligned} & 403.15988- \\ & 403.19988 \end{aligned}$		P43 none	LL
60	256	UL	-	*		$\begin{gathered} 209999.83511- \\ \text { INFIAITY } \end{gathered}$	$\begin{aligned} & 67.1999 \mathrm{e}- \\ & 67.19998 \end{aligned}$		PAA NONE	LL

number	...R04..	A^{T}	...activitr...	SLACK ACtivity	...cever limit. ..UPPER limit.	LOWER ACTIVITY UPPEK ACTIVITY	...unit cost.. ...UNTT CCST..	..upper cost.. ..LOLER CCSt..	LIMITING PROCESS.	AT AT
61	P5s	u	-	-	ncae	$\begin{gathered} 225455 \text {.EEAA2- } \\ \text { INFIAITY } \end{gathered}$	$\begin{aligned} & 10 \mathrm{C} .80001- \\ & 100.8 .0001 \end{aligned}$		NONE	LL
62	REC	ul	-	-	none	$\begin{gathered} 183486.893 e_{1-}- \\ \text { INFINITY } \end{gathered}$	$\begin{aligned} & 83.95998- \\ & 83.99598 \end{aligned}$		PAG NONE	LL
63	R61	UL	-	-	none	$\begin{gathered} 17007.56327- \\ \text { INFINGTY } \end{gathered}$	$\begin{aligned} & 167.99867- \\ & 167.99797 \end{aligned}$		PAT NCNE	LL
64	RE2	ul	-	-	nCNE	INFINITY	$\begin{aligned} & 168.79999- \\ & 168.79999 \end{aligned}$		PaE NONE	LL
65	RE3	ul	-	-		INEINITY	$\begin{aligned} & 117.60000- \\ & 117.80000 \end{aligned}$		pag mone	L2
66	R64	UL	-	-	- none	INFiNITY	$\begin{aligned} & 179.99995- \\ & 170.99995 \end{aligned}$		PSO NONE	L
67	F65	u	-	-		$\begin{gathered} 100058.42723- \\ \text { INFINITY } \end{gathered}$	$\begin{aligned} & 167.99598- \\ & 167.95999 \end{aligned}$		FS1 NONE	LL
68	R66	UL	-	-	- ncne	$\begin{gathered} 119999.9274 \mathrm{C-} \\ \text { INFINITY } \end{gathered}$	$\begin{aligned} & 179.99898- \\ & 174.99998 \end{aligned}$		P52 NONE	LL
72	R 70	UL	39998.96608	-	$\begin{array}{r} \text { NCNE } \\ 309 p 9.9 \in 608 \end{array}$	$6112 .-7628$ $46822.465 s \%$	$102 . c 4750-$ 102.04759		$\begin{aligned} & P 46 \\ & 234 \end{aligned}$	LL
73	R71	ul	119989.77307	-	none 119997.97007	79593.84589 136558.53530	$62.26356-$ 62.26356		$\begin{aligned} & \text { P } 34 \\ & \text { P } 73 \end{aligned}$	LL
75	R73	$u \mathrm{~L}$	149989.93652	-	$\begin{array}{r} \text { NCNE } \\ 109999.9 \mathrm{BC5} 2 \end{array}$	$\begin{aligned} & 139067.5 c e 95 \\ & 155129.26822 \end{aligned}$	$\begin{aligned} & 25.10922- \\ & 29.10322 \end{aligned}$		$\begin{aligned} & \text { P34 } \\ & \text { P73 } \end{aligned}$	LL

Table C-4. Range analysis for solution one (columns at limit level)

number	-CCLUNA.	$4{ }^{\text {T }}$...ACtivitr...	..ingut cest..	$\begin{aligned} & \because L \text { CDER LIMIT. } \\ & \cdots \text { UPPER LIMIT. } \end{aligned}$	LGAER ACTIVITY UPPER ACTIVITYunit cost... unit cost..	.. uoper cost.. ..LQwer CCST..	LIMITING PROCESS.	${ }_{\text {AT }}{ }_{\text {AT }}$
79	PO1	UL	74999.97152	41.43000	$74999^{\circ} .9932 t$	e7719.15921	$\begin{aligned} & 24.94280- \\ & 24.94280 \end{aligned}$	$66.37280-$ imfinity	$\begin{aligned} & \text { P27 } \\ & P_{16} \end{aligned}$	LL
80	P02	LL	-	34.61599-	nONE	30e1.15817	615.37469 $615.37469-$	INFINITY- 530.75471	$\begin{aligned} & 923 \\ & p 73 \end{aligned}$	L 4
82	P04	LL	*	148.30000-	NCNE	1368.53433	$\begin{aligned} & 734.08169 \\ & 734.08169- \end{aligned}$	$\begin{aligned} & \text { INFINITY- } \\ & \text { 5es.78170 } \end{aligned}$	$\begin{aligned} & p 43 \\ & p 34 \end{aligned}$	L
83	P05	UL	9890.99843	13\%.00001-	9999.59915	11446.74274	$213.00379-$ 213.80379	$\begin{gathered} 350.90380- \\ \text { INFINITY } \end{gathered}$	$\begin{aligned} & \text { P44 } \\ & \text { P34 } \end{aligned}$	$L L$
84	P06	ul	10759.99866	126.40000-	10989.99892	$\begin{array}{r} 5532.306 \mathrm{cz} \\ 12539.7 \leqslant 147 \end{array}$	$\begin{aligned} & 368.05615- \\ & 268.05615 \end{aligned}$	994.45616- INFINITY	P69	$\begin{array}{ll} \text { LL } \\ \text { UL } \end{array}$
89	P11	LL	-	73.78999-	NONE	7274.07232	10.60634 $19.65634-$	INFINITY-	$\begin{aligned} & \text { P50 } \\ & \text { R74 } \end{aligned}$	$\begin{array}{ll} L L \\ U L \end{array}$
91	P_{13}	UL	19998.99734	27.50000-	$15995^{\circ} .89820$	27274.06565	$30.30685-$ 30.30685	57.80685INFINITY	$\begin{aligned} & \text { P52 } \\ & \text { R } 74 \end{aligned}$	$\frac{L 1}{4}$
100	P22	LL	-	.02000-	nCNE	$10429 . \mathrm{e} 9727$	52.31532 $52.31532-$	$\begin{aligned} & \text { INF INITY- } \\ & \$ 2.29 \leqslant 32 \end{aligned}$	$\begin{aligned} & 248 \\ & 246 \end{aligned}$	L
114	P36	LL	-	$60.50000-$	NCNE	2627.53E76	857.16890 557.16850	$\begin{gathered} \text { INFINITY- } \\ \hline \text { T96.66890 } \end{gathered}$	P49 P34	$\frac{L L}{L L}$
132	254	LL	-	353.40c04-	none	INFINITM	$\begin{aligned} & \text { 25e.40004 } \\ & 358.40004- \end{aligned}$	INFINITY-	P67 nane	ul.
139	DE1	LL	-	630.20010	none	e32.e3628-	$\begin{aligned} & 3302.00977 \\ & 3302.00577- \end{aligned}$	$\begin{aligned} & \text { INFINITY- } \\ & 3932.20986 \end{aligned}$	$\begin{aligned} & 873 \\ & 567 \end{aligned}$	$\begin{aligned} & \text { LL } \\ & U R \end{aligned}$
149	P71	LL	-	$6.72000-$	NONE	$\begin{aligned} & \text { 6531.C7E47- } \\ & \text { 9cs.9sses } \end{aligned}$	$\begin{aligned} & 6.72000 \\ & 6.72000- \end{aligned}$	INFIMITY-	$\begin{aligned} & \text { R10 } \\ & \text { R } 76 \end{aligned}$	$\begin{array}{ll} u L \\ u L \end{array}$

Table C-5. Range analysis for solution one (rows at intermediate level)

Table C-6. Range analysis for solution one (column at intermediate level)

NUMBER	column.	41AEtivity...	..indut cist..	..LOEER LIMIT. . .UPPER LIMIT.	LOWER ACTIVITY UDPER ACTIVITYuntt cost.. Unit cost..	..upper cost.. ..lower cost..	LIMITING process.	${ }_{\text {AT }}{ }^{\text {at }}$
31	203	35	12719.19353	53. $28099-$	ncNe	$\begin{array}{r} 5529.205 \mathrm{ea} \\ \mathbf{9} 7717.16505 \end{array}$	$\begin{aligned} & 19.92835- \\ & 24.94280- \end{aligned}$	$\begin{aligned} & 78.22835- \\ & 33.35719- \end{aligned}$	$\begin{aligned} & p_{11} \\ & P_{01} \end{aligned}$	LL UL
85	007	35	6737.47457	95.40000-	none	$\begin{array}{r} .01203 \\ 2737.474 \equiv 5 \end{array}$	$\begin{array}{r} 62.44870- \\ 2304.20610- \end{array}$	$\begin{array}{r} 157.84870- \\ 2208.80610 \end{array}$	$\begin{aligned} & P 22 \\ & R 25 \end{aligned}$	$\mathcal{L U L}_{\mathcal{L}}$
86	P09	BS	1667.40885	107.45598-	none	$\begin{array}{r} .00190 \\ 13192.63551 \end{array}$	$190.84320-$	$298.34320-$ 78.09596	$\begin{aligned} & \text { R73 } \\ & \text { PO5 } \end{aligned}$	u u
87	-07	35	-	90.79899-	nONE	$10429.8 \mathrm{EAC7}$	$\begin{aligned} & \text { INFINITY- } \\ & 52.31533- \end{aligned}$	$\begin{aligned} & \text { INFINITY- } \\ & 38.48466- \end{aligned}$	P22 NONE	LL
83	P10	35	-	108.34595-	ncne	$2627^{\circ} .537 e 4$	$\begin{aligned} & \text { INFINITY- } \\ & 857.16805- \end{aligned}$	$\begin{aligned} & \text { INFINITY- } \\ & 748.81865 \end{aligned}$.36 NONE	u
90	P12	35	10875.31576	72.90000-	nCNE	$\begin{aligned} & 10237.71620 \\ & 12049.551 c 0 \end{aligned}$	$224.49505-$ 271.0331 e	$257.39506-$ 158.13319	$\begin{aligned} & P 11 \\ & R 73 \end{aligned}$	L
92	914	35	74997.97355	.02000-	none	T4sss.cozss	24.94280- INFINITY-	24.96天80- INFINITY	POI nome	u
93	215	35	*	.c2000-	nCNE	2081.15tce	$\begin{aligned} & 219.96633- \\ & 615.37085- \end{aligned}$	$\begin{aligned} & 215.28033- \\ & 615.35435 \end{aligned}$	$\begin{aligned} & 823 \\ & 002 \end{aligned}$	UL
94	916	35	12715.18320	.02000-	ncme	$\begin{array}{r} 5829.80462 \\ 87717.15467 \end{array}$	$17.72836-$ $24.94280-$	$19.54236-$ 84.52280	$\begin{aligned} & P 11 \\ & p \\ & p \end{aligned}$	4
95	217	35	-	.c2000-	none	1363.53376	$333.07225-$ $734.00191-$	$333.99225-$ $734 . C 6191$	$\begin{aligned} & \text { R25 } \\ & 024 \end{aligned}$	UL
96	P18	35	9799.99753	.02030-	NONE	$9 \div 59.557 \leq 0$	$\begin{aligned} & 213.90372- \\ & \text { INFINITY- } \end{aligned}$	$\begin{aligned} & 213.62372- \\ & \text { INFINITY } \end{aligned}$	P05 nove	u
97	P19	35	10759.98927	.c2000-	NONE	$\begin{array}{r} 5532.33 \mathrm{set} \\ 1095 \mathrm{~s} .9 \mathrm{es} 2 \end{array}$	36E.05656-INFINITY-	$\begin{aligned} & 968.07656- \\ & \text { INFINITY } \end{aligned}$	POt nome	u
93	P20	-9	8737.47451	.02000-	nCNE	2737.47451	$62.44870-$ $2304.20647-$	$\begin{array}{r} \epsilon 2.46870- \\ 23 C 4.18647 \end{array}$	$\begin{aligned} & \text { P22 } \\ & \text { R25 } \end{aligned}$	LL
99	P21	95	1667.40888	.c2000-	nCNE	$13192^{\circ}, \in 3 \in 22$	$190.84308-$ $105.58585-$	$150.86308-$ 185.57585	$\begin{aligned} & 873 \\ & \text { P05 } \end{aligned}$	UL UL
101	P23	35	-	-c8000-	NCNE	$2627^{\circ} .53 e 22$	$\begin{aligned} & \text { TNFINITY- } \\ & 857.16700- \end{aligned}$	$\begin{aligned} & \text { INFINITY- } \\ & 857.14900 \end{aligned}$	p36 NONE	21
102	924	35	-	-c2000-	NONK	7274.07120	$\begin{array}{r} 86 e .38732- \\ 19.80634- \end{array}$	$\begin{gathered} 868.40732- \\ 19.67634 \end{gathered}$	$\begin{aligned} & \text { R32 } \\ & \text { D11 } \end{aligned}$	4

NUMBER	.coluxan.	$4{ }^{1}$...ACtivitr...	..inaut cost..	. .LUEER LIMIT. ..UPPER LIMIT.	LOwER ACTIVITY UPPER ACTIVITY	...Unit cost.. unit cost..	...upper cest.. ..lomer ccst..	LIMITING PROCESS.	AT AT
103	225	35	10275.91607	.02038-	* none	$\begin{aligned} & 10237.71716 \\ & 12047.55215 \end{aligned}$	$\begin{aligned} & 224.45496- \\ & 271.03307- \end{aligned}$	$\begin{aligned} & 224.51486- \\ & 271.01309 \end{aligned}$	$\begin{aligned} & P_{11} \\ & \text { \& } 73 \end{aligned}$	LL
104	023	35	19099.99560	.02000-	NONE	$195 s s^{\circ} \text {.sssec }$	$30.30685-$ INFINITY-	30.32e85INFINITY	PIJ NONE	ul
105	027	35	74799.99463	17.80000-	NONE	74999.sesez	24.0.281- INFINITY-	44.74281- infinity	Pol name	u
106	228	95	-	22.00300-	NONE	3081.15520	$\begin{aligned} & 219.26029- \\ & 615.37447- \end{aligned}$	$\begin{aligned} & 241.86025- \\ & 553.37447 \end{aligned}$	$\begin{aligned} & \mathrm{F} 23 \\ & \mathrm{PO} \end{aligned}$	UL
107	P2\%	95	12719.19417	19.20000-	none	$\begin{array}{r} 5828.81644 \\ 87710.11724 \end{array}$	$19.92837-$ $24.94281-$	$\begin{gathered} 35.72837- \\ 5.14281 \end{gathered}$	$\begin{aligned} & p_{11} \\ & p_{0} \end{aligned}$	UL
108	030	35	-	SO.4COC:	nONE	$136 e .53322$	$333.97223-$ $34.08198-$	$364.37224-$ 683.68187	$\begin{aligned} & \text { R25 } \\ & \text { PO4 } \end{aligned}$	LL
109	P31	35	9999.99866	40.30000-	NONE	sesq.sgeto	213.903 A5-INFINITV-	$\begin{gathered} \text { 2SA. } 2 \mathrm{CBP6}- \\ \text { INFINITY } \end{gathered}$	POS NONE	UL
110	232	35	10799.99798	5c.40001-	none	$\begin{array}{r} 5532.34651 \\ 10597.95758 \end{array}$	e86.05627- INFINITY-	918.45628INFINITY	mone	UL
111	53.3	35	8737.47533	$40.30000-$	NONE	$\begin{array}{rl} *-00 e 87 \\ 9737 & 4>533 \end{array}$	$62.44869-$ $2364.20656-$	$102.74889-$ 2263.90656	$\begin{aligned} & 022 \\ & 025 \end{aligned}$	L2
112	034	35	1567.40816	30.20000-	NONE	$13192^{\circ} . \epsilon 43 \leqslant 6$	$190.54314-$ $185.56588-$	$221.04314-$ 155.395888	$\begin{aligned} & \text { R73 } \\ & \text { PCS } \end{aligned}$	u
113	035	35	-	$40.30000-$	NONE	$1042 \text { s.esccu }^{\circ}$	$1385.95625-$ $52.31532-$	$142 t .25 t 28-$ 12.01532	$\begin{aligned} & \text { RA9 } \\ & >22 \end{aligned}$	LL
115	037	As	-	19.80000-	nCNE	7274.08ees	$860.38736-$ $19.60635-$	$885.18736-$ $.10365-$	$\begin{aligned} & R 32 \\ & \text { P11 } \end{aligned}$	UL
116	P38	25	10875.31737	30.20000-	NONE	10237.71753 12649.95251	$224.49487-$ $271.03308-$	$254.68489-$ 240.83308	P11 R73	4
117	P39	35	19758.99000	19.80000	NONE	$\begin{array}{r} .02115 \\ 19559.98608 \end{array}$	$30.30687-$ INFINITY-	$\begin{aligned} & \text { SO. } 1 \text { OE B7- } \\ & \text { INF TNITY } \end{aligned}$	P13 NONE	UL
118	P40	es	187499.77574	436.80005	NONE	$187499.57 \leqslant 74$	$\begin{aligned} & 9.97712- \\ & \text { INFINITY- } \end{aligned}$	$\begin{gathered} 426.62293 \\ \text { INFINITY } \end{gathered}$	PO1 NONE	UL
119	841	95	-	110.24002	none	$12386.24 \leq \mathrm{CA}$	$\begin{array}{r} 54.50162- \\ 153.07825- \end{array}$	$\begin{array}{r} 55.54840 \\ 263.21826 \end{array}$	$\begin{aligned} & \text { R23 } \\ & \text { PO2 } \end{aligned}$	UL
120	042	35	24166.46736	571.20008	nONE	$\begin{array}{r} 10508.63526 \\ 1 \in 66 \in 6.35870 \end{array}$	$\begin{aligned} & 10.48861- \\ & 13.12779- \end{aligned}$	$\begin{aligned} & 560.71147 \\ & 564.32787 \end{aligned}$	$\begin{aligned} & P_{11} \\ & P_{01} \end{aligned}$	4 u

number	-COLJMN.	${ }^{\text {a }}$...activity...	.. inpur cost..	$\begin{aligned} & \text { OLOER LIMIT. } \\ & \cdots \text { UPDEK LIMIT. } \end{aligned}$	LOVER ACTIVITY UPDEF ACTIVITY	$\begin{aligned} & \text {... Unit cost.. } \\ & \text {. Unit cost.. } \end{aligned}$...upper cost.. ...lower cest..	LIMITING PRORESS.	${ }_{\text {AT }}^{\text {AT }}$
121	243	A. 5	-	403.20001	nche	3284.4913\%	$137.15509-$ $305.68645-$	264.04492 729.06746	$\begin{aligned} & 825 \\ & 004 \end{aligned}$	LL
122	P44	es	299999.77595	67.20001	NONE	2csssc.i.77ssb	$\begin{aligned} & 7.13013- \\ & \text { INFINITY } \end{aligned}$	60.0698 infinity	nome	u
123	PAS	95	225499.80737	160.80004	none	$\begin{aligned} & 113412.57442 \\ & 225457.80739 \end{aligned}$	$42.34421-$ INFINITY-	5e.455ez imfinity	NOAE	u
124	P46	35	123486.91205	84.00000	NONE	1E3QRG.512C5	$2.97375-$ $100.72408-$	81.02625 193.72405	$\begin{aligned} & \mathrm{P} 22 \\ & \mathrm{R} 25 \end{aligned}$	LL
125	P67	35	17007.56118	168.00000	NONE	$134584 . e 7 \leqq C 9$	$18.71011-$ $18.19567-$	149.28795 186.15873	$\begin{aligned} & 073 \\ & 005 \end{aligned}$	UL L
126	P48	95	-	163.90000	NONE	$10425 E \cdot F A C E T$	$138.59563-$ $5.23153-$	$\begin{array}{r} 30.20437 \\ 174.03153 \end{array}$	$\begin{aligned} & \text { R47 } \\ & \text { P22 } \end{aligned}$	$\stackrel{\text { UL }}{\text { LL }}$
127	-80	35	-	117.60000	none	$\begin{aligned} & \text { LAFINITY- } \\ & \text { 2124.e.21317 } \end{aligned}$	$117.60001-$ $104.53280-$	222.13200	$\begin{aligned} & R 63 \\ & \text { P36 } \end{aligned}$	u
128	050	85	-	180.00001	NCA-	$43644.4176-$	$144.73121-$ $3.28273-$	35.26880 183.28273	$\begin{aligned} & 532 \\ & \mathrm{P}_{11} \end{aligned}$	UL
129	- 81	35	100058.39457	160.00006	NCNE	$\begin{array}{r} 641 E 6.561 \text { 民é } \\ 110859.88=71 \end{array}$	$24.40163-$ 2\%.4.013-	143.50843 197.46018	F 11 R 73	uL
130	ps2	35	119999.95221	180.00001	NONE	$115 s e s .9 \text { saza }$	$\xrightarrow[\text { S.05114- }]{\text { INFINITY- }}$	174.94286 INFINITY	F13 NONE	ul
131	P53	95	64667619.3944	.12000-	NGNE	63190688.5726 INFIMITY	$.09701-$ $.12000-$	* $21701-$	$\begin{aligned} & \text { P11 } \\ & \text { R1F } \end{aligned}$	L
133	055	35	125648363.745	.03000-	NONE	101616001.816 134389025.25%	.02522-	.05522-	213 811	UL
134	P50	95	169856350.541	.03000-	none	158387050.627 197614244.92	.01370-	$.04370-$ $.0 c 802-$	p11 $p 13$	4 4
135	P57	35	194007626.610	.c3000-	NCNE	$182247795 . E C_{1}$ $223592415.20 C$.01332-	.04332-	$\begin{aligned} & P_{11} \\ & 1_{1} \end{aligned}$	$\stackrel{L 1}{4}$
136	258	35	34543248.3463	.03000-	NONE	$\begin{aligned} & 29520702.64 C 2 \\ & 275559792.181 \end{aligned}$	$.06876-$ $.03006-$	-09276-	$\begin{aligned} & \text { R73 } \\ & \text { R16 } \end{aligned}$	\cdots
137	P59	95	53072800.3375	.03000-	NCNE	26E $53014.12 E$? clesteč. $6^{\circ} \mathrm{C}$:	$\begin{aligned} & .025 \mathrm{c} 2- \\ & .01620- \end{aligned}$	$\begin{aligned} & .05502- \\ & .01374- \end{aligned}$	$\begin{aligned} & P_{13} \\ & P_{1} \end{aligned}$	UL
136	P60	es	123046262.704	.03000-	nCNE		$\begin{aligned} & .04908- \\ & .03000- \\ & \hline \end{aligned}$.cr908-	$\begin{aligned} & \text { P13 } \\ & \text { R18 } \\ & \hline \end{aligned}$	u u

numeer	. CGluman.	4 T	...activitr...	..tNPUT COST...	$\begin{aligned} & \text {. LONER LIMIT. } \\ & \text {. UPPER LIMIT. } \end{aligned}$	LCEER ACTIVITY UPDER ACTIVITY	$\begin{aligned} & \hline \text {. UNIT COST. } \\ & \ldots \text { UNIT } \operatorname{cost} . \end{aligned}$	$\begin{aligned} & \hline \text {.UPPER CCST.. } \\ & \text {..LOEER COST.. } \\ & \hline \end{aligned}$	LIMITING PROCESS.	$\begin{aligned} & \text { AT } \\ & \text { AT } \end{aligned}$
140	262	55	2596267e.7993	.08000-	none	$\begin{array}{r} 25253133.7 \in 12 \\ \text { INFINITY } \end{array}$	$\begin{aligned} & .85426- \\ & .08000- \end{aligned}$.93426-	$\begin{aligned} & P 13 \\ & R 12 \end{aligned}$	u_{u}
141	P63	95	48551.20821	6.72000-	nCNE	$\begin{aligned} & 36344.540 \geq 0 \\ & 5999 \mathrm{c}, \mathrm{c} 7536 \end{aligned}$	$\begin{array}{r} 40.25430- \\ 6.72000- \end{array}$	55.97420-	$\begin{aligned} & \text { P13 } \\ & \text { R02 } \end{aligned}$	$U_{U L}$
142	Pe4	75	10584.03553	8.40000-	NONE	$\begin{array}{r} 9375.23960 \\ 19959.58426 \end{array}$	$501.50062-$ $0.40000-$	509.90062-	$\begin{aligned} & \text { P13 } \\ & \text { RO3 } \end{aligned}$	$u_{u L}$
143	P65	35	39999.96608	3.40000-	ncne	$\begin{array}{r} 6112.77854 \\ 39599.556 \mathrm{Ce} \end{array}$	$102.04759-$ INFINITY-	$110.44759-$ INFINITY	R70 nane	un.
144	066	95	119799.97007	$8.40000-$	NDNE	$\begin{gathered} 70 \leq 93 . e 8 \leq \varepsilon 0 \\ 117559.57 \in C 7 \end{gathered}$	62.2t:56- INFINITY-	$\begin{aligned} & 70.66356- \\ & \text { INFINITY } \end{aligned}$	none	u
145	PO°	35	15600.75297	13.44300-	NCNE	$\begin{aligned} & 14454.45677 \\ & 24589.58478 \end{aligned}$	$259.49014-$ $13.44000-$	272.73014-	$\begin{aligned} & \text { R } 73 \\ & \text { RO6 } \end{aligned}$	$\begin{array}{ll} u l \\ u L \end{array}$
146	P88	35	149999.93652	13.44C00-	NONE	$\begin{aligned} & 139 c \in 7.71<9 c \\ & 149539.5 e 6 \$ 2 \end{aligned}$	$\begin{aligned} & 20.10822- \\ & \text { INFINITY- } \end{aligned}$	$\begin{aligned} & 42.54822- \\ & \text { INFINITY } \end{aligned}$	${ }^{\text {a }} 33$ none	UL
147	P69	35	22143.99686	$10.08000-$	none	$\begin{array}{r} 544 . c 25 E 7 \\ 29559.55627 \end{array}$	$\begin{aligned} & 25.36151- \\ & 10.28000- \end{aligned}$	$38.14191-$	$\begin{aligned} & \text { P13 } \\ & \text { POE } \end{aligned}$	$V_{U}^{U L}$
148	p7c	35	132522.3443P	$18.08000-$	nene	$\begin{aligned} & \text { t2eEt. } 57-\leq 0 \\ & \text { 1essss.ianez } \end{aligned}$	$\begin{aligned} & 38, \text { setze- } \\ & 13.08 C 00- \end{aligned}$	48.64838-	$\begin{aligned} & P 11 \\ & R O F \end{aligned}$	LL
150	272	95	77719.17418	13.40000-	* ncme	$\begin{array}{r} 76: 41 . \operatorname{COSC3} \\ \text { INFINTYY } \end{array}$	$\begin{array}{r} 396.09264- \\ 13.40000- \end{array}$	$409.49264-$	$\begin{aligned} & P 22 \\ & R 20 \end{aligned}$	$\begin{aligned} & \text { ut } \\ & \hline \end{aligned}$
151	073	Bs	2719.12887	12.30060-	none	$\begin{array}{r} 1241-\operatorname{C2SEg} \\ \text { INFINITY } \end{array}$	$\begin{aligned} & 396.09261- \\ & 12.30000- \end{aligned}$	$408.39261 \text { - }$	$\begin{aligned} & P 22 \\ & R 21 \end{aligned}$	$\begin{aligned} & L L \\ & U L \end{aligned}$

Table C-7. Resources (rows) used in solution two

NUMBER	. . . 20.	AT	...ACTIVITY...	SLACK ACTIVITY	.. LOwEF LIMIT.	. . upper limit.	- DUAL ACTIVITY
50	248	UL	-	-	ACNE	*	1435.92826-
51	R49	UL	-	.	NONE	.	$1399.42026-$
52	R50	ul	-	.	NONE	-	$1664.97294-$
53	R51	UL	-	-	NONE	.	$1039.86960-$
54	R52	UL	-	-	NONE	-	1121.60116-
55	R53	UL	.	-	NONE	-	$1039.86720-$
56	954	UL	-	-	NONE	-	$436.80000-$
57	255	UL	-	-	NONE	-	$110.24000-$
58	$R 56$	UL	.	-	NCNE	-	571.20000-
59	257	UL	-	-	NONE	-	403.20000-
60	R58	UL	-	-	none	-	67.20000-
61	R59	UL	-	-	NONE	-	100.80000-
62	R60	UL	-	.	NONE	-	84.00000-
63	R61	UL	-	-	NENE	-	165.00000-
64	R62	UL	.	-	NONE	-	168.80000-
65	R63	UL	-	-	NONE	-	224.21982-
66	R64	UL	-	-	NONE	-	180.00000-
67	R65	UL		-	NONE	-	169.00000-
68	R66	ul	-	-	NCNE	*	$120.00000-$
69	R67	95	-	-	NONE	-	-
70	R68	35	40414.00521	15525.99479	NONE	60000.00000	-
71	R69	35	7014.38154	2985.61846	NCAE	10000.00000	-
72	R70	UL	40000.00000	-	NUNE	40000.00000	95.71932-
73	R71	UL	120000.00000	-	none	120000.00000	56.29207-
74	R72	BS	12065.52405	12934.47595	NONE	25000.00000	.
75	Q>3	UL	150000.00000	-	NONE	1500CO. 5000	26.86422-
76	274	95	22144.00000	7856.00000	NONE	30000.00000	.
77	R75	35	106469.38281	$535=0.61719$	NGNE	$17000 \mathrm{C.COOCO}$	-
78	R76	35	.	1000.00000	NONE	1000.00000	-

Table C-8. Activities (columns) used in solution two

NUMBER	- COLUMN.	4 T	...ACTIVITY...	..INPUT COST..	. LlGWER LIMIT.	. . LPPER LINIT.	.RECUCED CCST.
79	PC1	35	55077.97651	$41.43000-$	-	750CC.C0000	-
80	P02	35	-	34. $62000-$.	ncaE	-
81	P03	LL	-	58.30000-	.	ncaE	24.94280-
82	P04	LL	*	143.30000-	-	NCNE	$742.13390-$
83	P05	UL	10000.00000	137. $00000-$	-	10000.00000	216.14778
84	POE	UL	11000.00000	126.40000-	.	$110 \mathrm{O} 0 . \mathrm{COOCO}$	227.53464
85	P07	35	9777.11239	95.40000-	.	NCAE	-
86	P08	95	4650.40706	$107.50000-$.	NCAE	
87	P07	LL	-	$90.80000-$	-	NCNE	$57.23430-$
88	P10	3s	.	108.35000-	.	NCAE	1.
39	P11	85	*	73.80000-	-	NCNE	-
90	F12	85	9494.50204	72.90000-	-	NCAE	
91	P13	UL	20000.00000	27.50000-	-	20000.00000	5.79765
92	P14	35	55077. 77851	. $02000-$	-	NCAE	寿
93	015	LL	-	. $02000-$	-	ACAE	643.24238-
94	216	35	-	.02000-	-	NCAE	-
95	P17	35	-	. $02000-$	-	NONE	-
96	P18	35	10000.00000	. $02000-$	-	ACAE	
97	P19	35	11000.00000	. 02000-	-	NCAE	-
93	P20	35	9777.11239	. 02000-	.	NONE	.
99	P21	35	4650.40706	- C2000-	.	NCNE	-
100	222	95	-	. 02000-	-	ncne	-
101	P23	as	,	. $02000-$	-	ACAE	-
102	p24	- L	-	. 02000-	-	ACAE	44.20555-
103	P25	35	9494.50204	- $\mathrm{C2000}$	-	NCAE	-20555
104	P26	35	20000.00000	- 02000-	-	ACAE	-
105	P27	35	55077.97851	17.80000-	-	NCAE	.
106	P29	35	-	22.00000-	-	ncne	-
107	P27	35	-	15.80000-	-	ACAE	-
108	230	35	-	$50.40000-$.	NCAE	.
109	P31	35	10000.00000	$40.30000-$	-	ncae	-
110	232	35	11000.00000	$50.40000-$.	NCNE	-
111	P33	35	7777.11239	$40.30000-$	-	NONE	-
112	P34	35	4650.40706	$30.20000-$.	ACNE	-
113	P35	35	仡	$40.30000-$	-	nCAE	-
114	P36	35	-	60.50000-	.	NCAE	.
115	237	35	-	$19.80000-$.	ACAE	-
116	Р38	35	9494.50204	30.20000-	-	ACAE	-
117	-39	35	20000.00000	17.80000-	-	ACAE	-
118	P40	BS	137694.94628	436.80000	.	acae	-
119	P41	35	13769.946	110.24000	.	NCAE	-
120	P42	BS	-	571.20000	-	NCAE	-
121	P43	35	-	403.20000	.	ncae	.
122	044	8S	300000.00000	67.20000	-	NCNE	-
123	P45	35	225500.c0000	100.80000	.	ncne	-
124	P4E	35	205319.36015	24.00000	-	NCNE	-
125	047	35	47434.15199	168.00030	.	ACAE	.
126	P49	55	- 1 (168.20000	-	ACAE	-
127	Pa_{4} ?	LL	-	117.6000 C	-	ACAE	10t.E1582-

NUMEER	- colvmin.	$4 T$. . A ASTIVITY...	. . INPUT COST..	. . Lower limit.	. . upper limit.	- RECUCEO Cost.
128	P50	35	-	180.00000	-	NCAE	-
129	P51	95	97349.41879	158.00000	.	NCNE	
130	P52	35	120000.00000	180.00000	.	NCAE	
131	253	35	50975481.0176	. $12000-$.	NCAE	
132	P54	LL	-	358.40000-	.	NCAE	$358.40000-$
133	-55	35	95455349.8683	. $03000-$.	NCAE	
134	P56	ES	128330348.107	. $03000-$.	ACAE	
135	057	95	147885375.684	. $03000-$	-	NCNE	
136	P58	BS	43587397.3342	. $\mathrm{C} 3000-$.	NCAE	-
137	P59	BS	53073000.0000	. $03000-$	-	NCNE	.
138	P60	35	93669180.6592	. $03000-$.	NCAE	-
139	P61	LL	*	630.20000	.	NCAE	$3686.85665-$
140	P62	BS	13595897.6223	. $08000-$	-	NGNE	2686.85665
141	P63	Bs	40414.00521	$6.72000-$	-	ACAE	-
142	P64	BS	7014.38154	$8.40000-$.	NCAE	.
143	P65	BS	40000.00000	8.40000-	.	NCAE	-
144	P66	95	120000.00000	$8.40000-$.	ACAE	.
145	P67	35	12065.52405	$13.44000-$	-	NCAE	,
146	268	35	150000.00000	$13.44000-$	-	NCAE	.
147	P69	35	22144.00000	$10.08000-$	-	NCNE	
148	270	35	106469.38281	$10.08000-$	-	NCAE	-
149	271	LL		6.72000-	-	NCAE	6.72000-
150	P72	SS	25077.97351	13.40000-	-	ACAE	6.2000
151	P73	LL	.	12.30000-	.	NOAE	12.30000-

Table C－9．Resources（rows）used in solution three

NUMEER	．．R R w ．	A T	．．．aztivity．．．	SLACK ACTIVITY	．loner limit．	．．upper limit．	－dual activitr
1	C1	35	164175753.834	$16417505 こ .834-$	NCNE	NCNE	1.00000
2	C2	35	116331228.592	$116331228.592-$	NONE	NCAE	
3	201	UL	180000.00000	－	NONE	180000.00000	509．76937－
4	RO2	UL	19874．00000	－	NUNE	15974.00000	$6.72000-$
5	203	ul	10647.00000	．	NUNE	$10647.0 C C C O$	1160．63532－
6	RO4	UL	11356.00000	．	NCNE	11356.00000	8．40000－
7	R05	UL	21293.00000	－	NONE	21253.000	$5.40000-$
8	206	UL	21293.00000	．	none	21293.00000	$13.44000-$
9	RO7	UL	65300.00000	－	NCNE	€5こ00．000 0	104．35775－
10	RO8	JL	44006.00000	．	NONE	44006.00000	10．08000－
11	R09	u	21293.00000	－	NONE	21293.00000	82．56656－
12	R10	35	18028.56638	3974.43362	NGNE	22003.0000 C	．
13	R11	35	－	1000．00000	NONE	1000.00000	
14	R12	UL	36500000.0000	，	NONE	30500000.0000	． $08000-$
15	R 13	UL	－	．	NGNE	305000．0000	． $03000-$
16	R14	UL	．	．	NCNE	．	． 03000 －
17	815	UL	－	－	NONE	－	． $83000-$
18	R16	UL	．	－	NONE	．	． $03000-$
19	R17	UL	．	－	NCNE	．	．0き000－
20	R18	UL	．	．	NONE	．	．03000－
21	219	UL	－	．	NONE	－	． $12000-$
22	R20	JL	100000.00000	－	NONE	100000.00000	13．40000－
23	R21	35	148965.27816	1134.72184	NGNE	150000.00000	－
24	R22	ul	1486．278．16	134．72184	NCNE	50000．00000	680.3817 ê－
25	R23	UL	－	－	NCNE	－	63．55792－
26	R24	UL	－	．	NCNE	－	673．66178－
27	R25	3 S	＊	－	nene	．	
28	226	UL	－	．	NONE	－	878．67546－
29	227	UL	－	．	NUNE	．	1297．47341－
30	R28	JL	．	．	NCNE	．	$701.86297-$
31	R29	UL	－	．	NCNE	．	722．41097－
32	R30	UL	－	－	NGNE	．	682．25897－
33	R31	ul	－	．	NCNE	．	871．16870－
34	R32	UL	－		NONE		843．09096－
35	R33	UL	－		NONE		1066．74854－
36	R34	us	－	－	NCNE		848．08856－
37	R35	95	132917271.844	167082729.156	NONE	205559555．959	．
38	R3t	95	212372287.899	37607712.1006	NONE	29¢759955．959	
39	R37	2s	2 68018438.785	31981561．2139	NONE	299995999．959	
40	R38	BS	26137371．7371	273862628.262	NONE	299595555．559	－
41	Q39	35	42591381.6939	257408618.305	NONE	299999959.950	－
42	R40	35	154823958.176	145176041.823	NONE	259959595．599	．
43	R41	UL	－	．	NONE		975．71215－
44	242	UL	．	．	ncne	．	$335.91140-$
45	R4こ	ul	．	－	NONE	－	cee．09215－
46	844	UL	－	．	NONE	－	74．86490－
47	245	UL	－	．	ncne	．	$1233.60605-$
43	246	UL	－	－	NONE	－	1430．64527－
47	F47	UL	．	．	NCNE	．	1038．58422－

NUMBER	...RJa..	${ }^{4} \mathrm{~T}$. . ȦTIVITY...	SLACK ACTIVITY	. LOWEF LIMIT.	. .upper limit.	- JUAL ACTIVITY
50	R4E	UL	-	-	NONE	-	1070.41840-
51	R45	UL	.	.	NONE	-	1097.73822-
52	R50	UL	-	-	NCNE	-	$420.60195-$
53	Q 51	U	-	-	NONE	.	1039.8t560-
54	R 52	UL	.	-	NONE	.	1458.35360-
55	R53	UL	*	.	NCNE	-	$1039.86720-$
56	254	U	-	-	nane	-	436.80000-
57	F55	UL	-	-	NONE	.	$110.24000-$
58	R56	UL	-	-	NGNE	-	571.20000-
59	R27	JL	-	-	NONE	-	$403.20000-$
60	R58	UL	-	.	NCNE	.	67.20000-
61	R59	UL	-	-	NONE	.	$100.80000-$
62	860	UL	-	-	NONE	-	$84.00000-$
63	R61	UL	-	-	NCNE	.	$168.00000-$
64	R62	UL	-	-	NONE	.	177.06391-
65	R63	UL	-	-	NONE	-	$117.60000-$
66	R64	UL	.	.	NONE	.	$180.00000-$
67	R65	UL	-	.	NONE	.	$168.00000-$
68	R66	U	-	-	NCNE	-	$180.00000-$
69	R67	35	.	-	NONE	-	-
70	R68	85	24515.24275	35484.75725	NONE	60000.00000	-
71	R69	UL	10000.00000	.	NONE	10000.00000	1152.23532-
72	R70	35	26032.78544	13967.21456	NONE	$400 \mathrm{CC.CCCCO}$	-
73	R71	35	81130.45899	38869.54101	NGNE	120000.00000	,
74	R 72	BS	19712.93595	5287.06405	none	$250 \mathrm{CC.COCCO}$	-
75	R73	UL	150000.00000	-	NONE	$150000.000 C 0$	$90.91775-$
76	R74	35	12796.23140	17203.7685 C	NONE	30000.00000	-
77	R75	UL	170000.00000	-	NONE	170000.00000	72.48656-
78	R76	35	.	1000.c0000	NCNE	100.00000	-

Table C－10．Activities（columns）used in solution three

NUMBER	－COLUNN．	4 T	．．．ACTIVITY．．．	．．IAPUT CEST．．	\cdots ．LOwER LImit．	．．upper linit．	－RETLCED CCST．
79	PO1	UL	75000.00000	$41.43000-$	－	75000.00000	24.94280
80	PO2	LL	．	$34.62000-$	．	NCAE	542.81226 －
81	－03	55	62520.61945	58．30000－	－	NCAE	．
82	204	LL	．	148．30000－	－	NCAE	$753.94697-$
83	005	UL	10000.00000	$137.00000-$	．	10000.00000	124.26289
84	P06	JL	11000.00000	$126.40000-$	．	$11000 . C C C C O$	542．98164
85	P07	35	4870.22675	95．40000－	．	ncaE	．
86	P08	35	．	$107.50000-$	．	NCNE	
87	PC9	35	．	90．80000－	．	ncne	－
88	口10	35	－	108．35000－	．	NCNE	．
89	P11	LL	－	73．70000－	．	NCAE	$50.00320-$
90	P12	35	5264.49509	$72.90000-$	．	none	
91	P13	ES	11344.65871	$27.50000-$	．	20000．000CO	－
92	P14	35	75000.00000	．02000－	．	NCNE	
93	P15	35	．	． $02000-$	．	ACAE	－
94	P16	35	62520.61945	． 02000 －	．	NCAE	－
95	P17	Ll	．	． $02000-$	．	NCAE	262．31869－
96	018	35	10000.00000	． $02000-$	．	ACAE	262．31869
97	$\bigcirc 19$	35	11000.00000	． 02000 －	－	NCAE	－
98	P20	35	4 ¢70．22675	． $02000-$	－	NCAE	
99	P21	35	．	－ $22000-$	－	NCAE	．
100	P22	35	．	． $22000-$	．	NOAE	－
101	P2J	LL	．	． $02000-$	－	NCAE	
102	P24	35	－	． $02000-$	．	NCNE	
103	－25	35	5264．49509	． $82000-$	．	NCNE	－
104	P2t	35	11344.65371	． $22000-$	－	ncae	．
105	P 27	35	75000.00000	$19.80000-$	．	NOAE	．
106	P28	35	－	$22.00000-$	．	NCAE	－
107	P29	35	E2520．61945	$17.80020-$	－	ACAE	．
108	－3C	35	－	$50.40000-$	－	NCAE	－
109	P31	35	10000.00000	40． $30000-$	．	ACAE	．
110	032	日S	11000.00000	$50.40000-$	．	NCAE	．
111	D33	35	4870.22675	$40.30000-$		NCAE	－
112	P34	LL	－	$30.20000-$	．	acae	$27.81136-$
113	P35	35	－	$40.30000-$	－	ACAE	．
114	P36	35	－	60．50000－	．	NCAE	－
115	P37	35	－	$19.80000-$	－	NGNE	－
116	P38	35	5264．49509	$30.20000-$	＊	NCNE	．
117	P39	35	11344.65871	19．80000－	．	NCAE	．
118	PAC	95	187500.00000	436.80000	－	NONE	－
119	PA 1	35	，	11 C .24000	．	NCAE	．
120	P42	35	118789.17695	571.20000	．	NCNE	－
121	P43	35	－	403.20000	－	NCAE	－
122	P44	35	300000.00000	67.20000	－	NCAE	－
123	P45	35	225500．00000	100.80000	．	ACAE	．
124	P46	35	102274.76172	e4． 00000	－	NCAE	．
125	0.7	35	．	168.00000	．	NONE	－
125	P48	LL	－	168.80000		NCNE	
127	P49	ミs	－	117.60000	－	NCAE	．

NUMBER	. COLUMN.	AT	...ACTIVITY...	.. INPUT COST..	. . Lower Limit.	. . UPPFE LIMIT.	- RECUCED Cost.
128	P50	AS	-	180.00000	-	NCNE	-
127	P51	35	45433.35496	168.60000	.	ACAE	.
130	P52	45	08067.95224	$180 . C 0000$.	NCAE	
131	P53	35	96830150.8276	. $12000-$.	NGNE	.
132	P54	LL	-30150.8276	358.4C000-	.	NCNE	こ58.40000-
133	P55	35	122917271.944	. 03000 -	-	NCAE	.
134	P56	E 5	212392287.897	. $53000-$.	ncae	.
135	P57	75	268018438.786	. $03000-$	-	ACAE	-
136	P58	35	26137371.7371	. $83000-$.	NUNE	
137	P59	95	4 E591381.6940	. $\mathrm{C} 3000 \mathrm{C-}$	-	NCAE	-
138	960	35	154823958.176	. $03000-$.	NOAE	-
139	PE1	LL		530.20000	.	ACAE	10717.04606-
140	P62	- 5	22222347.6478	. $68000-$.	NCAE	-107.04606
141	263	B5	24515.24275	$6.72000-$	-	NCNE	-
142	P64	35	10000.00000	8. $40000-$.	ncae	.
143	P65	55	26032.78544	$8.40000-$	-	NCAE	.
144	P66	35	E1130.45897	$8.40000-$.	NCNE	-
145	P67	35	19712.93595	$13.44000-$.	NCAE	-
146	P68	35	150000.00000	$13.44000-$	-	ACAE	-
147	P69	as	12796.23140	10.08000-	-	NCAE	-
148	P70	35	170000.20030	$10.68000-$		NCAE	-
149	P71	LL	-	6.72000-	.	NCAE	6.72000-
150	P72	35	48365.27816	13.40000-	.	ACAE	
151	P73	Lᄂ	.	12.30000-	-	ncae	12.30000-

Table C-11. Resources (rows) used in solution four

NUMBER	...PC* .	AT	. . ACTIVITY...	SLACK ACTIVITY	--LG\#ER LImit.	. . upper linit.	- JUAL ACTIVITY
50	R48	J	-	-	NONE	-	1208.73278-
51	R4?	UL	-	-	NCNE	-	126E.73644-
52	250	UL	-	.	nune	.	1518.7C996-
53	251	UL	-	.	NONE	-	789.15586-
54	R52	UL	-	.	NCNE	.	1016.03119-
55	R53	u	-	.	NUNE	-	940. $53586-$
56	R54	J	-	.	none	.	$403.20000-$
57	F55	UL	.	.	NGNE	.	84.00200-
58	256	ul	-	-	NONE	.	$537.60000-$
59	R57	U	.	-	NONE	-	$336.00000-$
60	R58	JL	-	.	NONE	-	$33.60000-$
61	R 59	JL	-	-	NONE	.	67.20000-
62	R60	Ul	-	.	NCNE	-	67.20000-
63	R61	u	-	-	NONE	-	134.40000-
64	R62	ul	-	.	NONE	.	143.94887-
65	R63	UL	-	-	none	.	201.81033-
66	R64	UL	-	-	none	-	172.35389-
67	DE5	UL	*	.	NONE	.	$134.40000-$
68	R66	UL	-	-	NONE	-	$113.30000-$
69	Re7	UL	-	-	none	.	336.00000-
70	R68	35	32418.39632	27581.60368	none	60000.30000	-
71	R59	95	8899.66613	11100.33387	NONE	20060.00000	-
72	R 70	J	40000.00000	-	NONE	40000.00030	61.99109-
73	R71	J	120000.00000	-	NONE	120000.00000	20.27330-
74	R72	95	14511.06940	10388.93060	NONE	25000.00000	-
75	R73	UL	150000.00000	.	NCNE	150000.00000	$7.70637-$
76	R74	35	544.00000	29456. 00000	NONE	$300 C C . \operatorname{COCCC}$.
77	Q75	95	142314.05303	27635.54697	NONE	170000.00000	-
78	R76	35	.	1000.00000	none	1000.00000	.

Table C－12．Activities（columns）used in solution four

NUMBER	－COLUMN．	$4 T$	．．．AこTIVITY．．．	．．input cest．．	．Lower limit．	．．upper limit．	－REDUCED COST．
79	P01	リレ	75000．00000	$51.43000-$	．	75000.00000	4.27550
80	PO2	LL	．	$44.62000-$	－	ACNE	611．39615－
81	P03	35	31983.91629	68．30000－	．	NCNE	．
82	204	LL	－	158．30000－	．	AGAE	586．91080－
83	P05	LL	－	$147.00000-$	．	10000.00000	$429.57637-$
84	P06	OL	11000.00000	$136.40000-$	．	11000.00000	215.21347
85	P07	35	8923.28581	105．40000－	－	NCNE	
86	POP	dS	11636.22716	117．50000－	－	NENE	
87	P09	35	－	100．80000－	．	NCNE	－
88	P10	35	．	118．35090－	－	ACNE	
89	P11	35	．	23．8COOC－	．	NCAE	
90	P12	45	11556.67075	$82.90000-$	－	NONE	
91	P13	35	．	$37.50000-$	－	20000.00000	
92	P14	35	75000.00000	． $02000-$	．	NCAE	
93	P15	35		． 02000 －	．	NLAE	
94	P16	35	31883.81629	． 02000 －	－	NGAE．	－
95	P17	35	－${ }^{\text {a }}$	． $82000-$	．	NCNE	－
96	P18	35	－	． 02000 －	．	nene	－
97	P19	35	11000.00000	． $02000-$	．	NCAE	－
98	P20	35	8923.28581	． $02000-$	－	NCAE	－
99	P21	35	11636.22716	． 02000 －	．	NCAE	．
100	022	35	11.36 .2276	－ $\mathrm{C} 2000-$	．	NCAE	
101	P23	35	．	． $02020-$	－	NCAE	－
102	P24	95	－	． $02020-$	．	NCAE	．
103	P25	35	：1556．67075	－． $22000-$	－	NCAE	－
104	P26	35	，	． $02000-$	．	NCAE	－
105	P27	35	75000.00000	$20.80000-$	．	NCAE	－
106	P28	35	－	$23.00000-$	－	NCAE	．
107	P29	45	31983.81629	$20.80000-$	．	NCAE	－
108	P30	35	－	$51.40000-$	－	NCAE	．
109	p31	95	．	$41.30000-$	．	NCAE	－
110	P32	35	11000.00000	$51.40000-$	．	NCNE	．
111	P33	35	8723．28531	$41.20000-$	．	NCAE	．
112	234	35	11636.22716	$31.20000-$	．	NCNE	－
113	P35	35	－1636－276	$41.30000-$	．	ACAE	．
114	P35	BS	－	61． $50000-$	－	NCAE	－
115	P37	95	－	20．80000－	．	NCAE	．
116	P38	35	11556.67075	ミ1．20000－	．	ACAE	．
117	คア9	LL	11556.67075	20．80000－	．	nune	$305.94886-$
118	P40	35	187500.00000	463.20000	．	NCAE	－5．9888
119	P4 1	35	．	84．00000	．	NEAE	．
120	P42	55	60579.25094	537.00000	．	NCAE	，
121	P43	\％ 5	－	336.00000	．	NCAE	－
122	P44	35	－	33.60000	．	ncae	．
123	－45	es	225500.00000	67.20000	－	NCNE	－
124	P45	35	187389.00201	67.20000	－	NCAE	－
125	P47	75	118689.51700	134.40000	．	NEAE	－
126	Pas	LL	－	100.80000	－	NCNE	$43.14887-$
127	049	LL	－	67.20000	－	NCNE	$134.61033-$

NUMBER	- COLUMN.	$4 T$...ACTIVITY...	..INPUT CEST..	. . LOwer limit.	. . Upfer linit.	. Recucel cost.
128	P50	LL	-	113.30000	-	NCNE	59.05389-
129	PS1	35	106321.37089	134.40000	.	NCAE	.
130	P52	35	*	113.30000	-	NCAE	-
131	253	35	68337538.9352	. 14000 -	-	NCNE	-
132	P54	35	-	336. C C000-	-	ACNE	
133	255	35	¢¢137246.4500	. $84000-$	-	NCNE	-
134	c56	75	153432949.792	. $24000-$.	NCNE	.
135	P57	35	223456794.718	. $84000-$.	NCAE	.
136	258	35	4 C 234509.5142	. $04000-$.	NCAE	-
137	P59	35	28352959.9999	. 04000 -	-	NLAE	-
138	060	35	110154434.656	- C4000-	.	NCNE	-
139	P61	LL	-	570.20000	.	NCNE	ミ090.14508-
140	P62	35	25042551.0252	. $65000-$	-	ACAE	-
141	P63	35	32419.39632	2.40000-	.	NCNE	-
142	-64	35	8999.66613	$10.08000-$.	NCAE	-
143	P65	35	40000.00000	$10 . \mathrm{CB000}$	-	NEAE	-
144	P6E	35	120000.00000	10. ce000-	.	NCAE	-
145	P67	35	14611. 36940	$13.44000-$	-	ncae	-
146	P68	35	150500.00000	$13.44000-$	8	ACAE	-
147	369	35	544.00000	$11.76000-$	-	NCAE	-
148	070	35	142314.053 Cl	11.7EOCO-	.	NCAE	.
149	271	LL	-	3.40000-	.	NCAE	$8.40000-$
150	P72	35	75883.81629	$16.80000-$	-	NCAE	.
151	p73	ES	1883.81629	$13.40000-$	*	NCAE	.

Table C－13．Resources（rows）used in solution five

NUMEER	．．ROw．	AT	．．．ACTIVITY．．．	SLACK ACTIVITY	．．lcmer limit．	．．lpper linit．	－DUAL ACTIVITY
1	C1	35	121559764.563	$121569064.563-$	NONE	NCNE	－
2	62	35	37834962．4450	$97834962.4450-$	NONE	ACAE	1.00000
3	FO1	UL	120000.00000	－	none	$120060.00 C C O$	616.68019 －
4	202	J	19374.00000	－	NONE	19874.00000	$8.40000-$
5	203	UL	10547.00000	－	NONE	10647.00000	10．08000－
6	R 04	JL．	11356.00000	－	NONE	11356.00000	$69.06767-$
7	205	J	21293.00000	．	NGNE	21253.00000	28．11922－
8	206	UL	21293.00000	．	none	21293.00000	$13.44000-$
9	9.07	UL	65300.00000	－	NONE	65300.00000	$20.17136-$
1 c	Soを	UL	44006.00000	．	NCNE	\＄ $4006 . C O C C O$	$11.76000-$
11	ROP	UL	21293．00000	．	NONE	21253.0000	$11.76000-$
12	910	95	9524．25589	13475.74011	NCNE	22003.0000	
13	R11	35	－	1000.00000	none	1000.00000	－
14	R12	J	25500000.0000	．	NLNE	2550060C．0000	． $05000-$
15	R13	U	．	－	ACNE	．	． $04000-$
16	R14	UL	．	．	NONE	．	． 04000 －
17	R15	ul	－	．	NGNE	．	． 04000 －
18	216	UL	－	．	NCNE	．	． 04000 －
19	Q 17	U	－	．	NCNE	．	． $04000-$
20	219	UL	－	＊	NONE	．	． $04000-$
21	219	UL	－	．	NONE	．	． 14000 －
22	220	U	50000.00000	－	NONE	50000.00000	16．80000－
23	F21	3s	74242.59891	40757．40109	nCNE	115000.00000	．
24	マ22	儿	－	．	NENE	．	$741.37569-$
25	223	JL	－	－	none	－	120．80007－
26	224	UL	－	－	ACNE	－	759.09119
27	Q25	UL	－	－	NCNE	．	915．51613－
28	F26	ul	．	－	NGNE	．	957．42049－
29	R27	UL	－	－	NONE	．	1069．68650－
30	R28	u	．	－	NCNE	．	$1040.21393-$
31	Q20	u	＊	．	NCNE	．	726．3044 $5-$
32	230	J	－	．	NLINE	．	548．84961－
33	231	JL	－	－	NONE	．	E24．94105－
34	232	UL	－	－	NCNE	．	$770.55177-$
35	233	UL	－	－	NONE	．	813．17987－
36	R34	J	－	－	NONE	－	$730.93577-$
37	235	35	72946314.2913	2270536E5．708	NONE	295599759．9c0	＋30．9357＊
38	R36	35	151906893.718	$148 C 93106.281$	NONE	29595c．99．5c\％	．
39	237	75	177334317.572	122665682.427	NCNE	$29999995 ¢ .959$	．
40	R38	35	45273914.1923	250726085.817	NENE	295959995．595	＊
41	230	75	28652999．7999	271146995.999	NCNE	275595096.559	．
42	840	3 S	30777339．0223	21922266 C．577	NCNE	295959955．599	．
43	R41	UL	－	－	NGNE	－	953．61084－
44	242	U	－	－	NONE	－	297．37591－
45	243	12	－	．	NGNE	．	971．ミ2634－
46	R44	J	．	．	NONE	－	558．72712－
47	245	U	－	－	NCNE	．	821．3824－－
48	246	ル	－	－	NONE	－	1239．26200－
49	24^{7}	J	－	－	NONE	－	1234.54216 －

NUMBER	. . . スc.	$4 T$...A:TIVITY...	SLACK ACTIVITY	..lower Limit.	. . ufper linit.	- DUAL ACTIVITY
50	248	UL	-	-	NCNE	-	1215.12284-
51	$24 ¢$	UL	.	-	NONE	.	$841.63784-$
52	250	J	-	-	NONE	-	$1525.68049-$
53	251	UL	.	.	NONE		953.22557-
54	R52	UL	-	.	NGNE	.	1033.03568-
55	R 53	JL	.	-	NONE	.	$634.59100-$
56	R54	J	-	-	NCNE	*	$403.20000-$
57	R55	UL	.	.	none	.	$84.00000-$
58	F56	UL	-	-	nene	-	$539.85026-$
59	R57	ul	.	.	NONE	.	$336.00000-$
60	258	UL	.	-	NONE	-	33.60000-
61	R59	UL	-	-	NONE	-	67.20000-
62	260	ul	.	.	NONE	.	E7.20000-
63	861	UL	-	-	NONE	-	134.40000-
64	R62	UL	.	-	none	-	100.80000-
65	263	UL	-	-	NONE	-	202.80083-
66	864	UL	-	.	NENE	-	$173.07218-$
67	265	J	-	-	NCNE	-	$134.40000-$
68	266	UL	-	.	NONE	-	$113.30000-$
69	R67	UL	*	-	NONE	-	$336.00000-$
70	268	95	24181.17433	35818.82567	NONE	60000.00000	.
71	R69	BS	5330.01040	4669.58960	NCNE	10000.000 cc	-
72	R70	UL	40500.00000		NONE	40000.00000	58.98767-
73	-71	us	120000.00000		NONE	120000.00000	18.03922-
74	272	35	10995.23789	14004.16211	NONE	250c0.000c0	
75	R73	ル	150000.00000	-	NONE	$150 \mathrm{CCC.cccco}$	6.73136-
76	274	35	544.00200	29450.00000	NONE	30000.00000	
77	275 876	35	116201.07513	53798.92087	NONE	$1700 \mathrm{CC.000co}$	-
78	R76	35		1000.00000	NONE	1000.00000	

Table C-14. Activities (columns) used in solution five

NUMBER	- COLUMN.	AT	...ACTIVITY...	..INPUT COST..	. Llater limit.	. . UPPER LIMIt.	- Reduced cost.
75	-C1	35	74242.59891	$51.43000-$	-	75 CCC. 00000	-
80	202	$1-2$	-	$44.62000-$	-	NCNE	626.00519-
81	003	35	.	68.30000-	-	NOAE	
82	204	35	-	153.30000-	-	NCNE	-
83	205	35	.	147.00600-	-	10000.00000	
84	206	UL	11000.00000	$136.40000-$,	1100.0000	195.98181
85	P07	35	9962.32197	105.40000-	-	ACAE	.
86	-08	95	14619.22510	$117.50000-$	-	NCAE	-
87	$\bigcirc 09$	L1	.	$100.20000-$	-	NONE	$433.82322-$
88	210	35	.	$118.35000-$	-	ACNE	
89	P11	95	-	$83.80000-$	-	NCNE	-
90	P12	35	10175.25401	$82.90000-$	-	NCAE	-
91	P13	33	-	$37.50000-$	-	20000.00000	.
92	P14	35	74242.59891	.02000-	-	NCAE	
73	P15	3 S	,	. $62000-$.	ncae	-
94	P16	35	.	. 02000 -	.	NCNE	-
95	D_{17}	LL	.	. $22000-$.	NCAE	$590.73236-$
96	P15	LL	.	. $02000-$	-	NCAE	$428.51136-$
97	P19	35	11000.00000	. $02000-$.	ncae	.
98	P2C	35	9962.72197	. $02000-$.	NCNE	.
99	P21	35	14617.22510	. $\mathrm{C} 2000-$.	nCAE	
100	222	35	-	. $22000-$.	ncae	.
101	P23	BS	-	. $22000-$	-	NCAE	
102	224	35	-	. $\mathrm{C} 2000-$	-	NCNE	-
103	225	35	10175.25401	. $\mathrm{C} 2000-$.	NCAE	-
104	226	LL		. $02000-$	-	AcaE	$310.01857-$
105	327	35	74242.59891	20.80000-	.	NCNE	.
106	$=28$	3 s	-	23.00000-	-	nGine	-
107	P29	35	-	20.80000-	.	ACAE	-
108	ค30	35	.	$51.40000-$.	NONE	
109	P31	35	-	$41.30000-$.	NCAE	-
110	P32	35	11000.00000	$51.40000-$.	NCAE	-
111	D33	35	9762.92197	$41.30000-$.	NCAE	-
112	234	35	14619.22510	31.2000-	.	ACAE	-
113	035	85	-	$41.30000-$.	NCAE	.
114	236	35		$61.50000-$.	NCAE	.
115	037	35	-	$20.80000-$.	NEAE	-
116	P38	3s	10175.25401	$31.20000-$	-	NCAE	.
117	235	Bs	-175.25401	20.80000-	-	ACAE	.
118	P40	35	185606.49729	403.20000	.	ACNE	-
119	P41	95	,	\$4.00000	.	nCNE	-
120	P42	LL	-	537.60000	-	NEAE	2.25026-
121	043	BS	-	336.00000	.	NCAE	-
122	P44	35	-	33.60000	.	NCAE	-
123	045	95	225500.00000	67.20000	.	NCNE	.
124	346	3s	209221.36137	67.20000	.	NCNE	
125	047	35	149116.09607	134.40000	.	ncne	-
126	P48	35	.	100.30000	-	NCAE	.
127	04. 9	LL	.	67.20000	-	NCNE	135.60083-

NUMBER	. COLUMN.	4 T	...ACTIVITY...	..INPUT CCST..	. LOWER LIMIT. ..UPPER	LIMIT.	-RECUEEC COST.
129	P50	LL	-	113.30000	*	NCAE	$59.77219-$
129	551	35	93612.33670	134.40000	.	NCNE	.
130	P52	35	.	113.30000	-	NCAE	-
131	253	35	$5 \subseteq 146353.8835$. $14000-$	-	NCAE	-
132	P54	35	-	336.00000-	-	NCAE	.
133	255	35	7¢946314.2914	. $04000-$	-	ACNE	-
134	056	75	151906893.719	. $04000-$.	ACAE	-
135	-57	35	177334317.572	. $04000-$	-	NCNE	.
136	253	35	45273914.1823	- $\mathrm{C} 4000-$	-	NCAE	*
137	359	35	28352999.9999	. $04000-$	-	NCNE	.
138	P60	Bs	a C>77339.0223	. $04000-$	-	NCNE	-
139	P61	LL	-	570.20000	-	NCAE	$3038.87619-$
140	P62	35	12551687.7992	. $05000-$	-	NCNE	-
141	P63	35	24181.17433	8. $40000-$.	ACAE	-
142	P64	35	5330.01040	10.08000-	.	NCNE	-
143	P65	35	40000.00000	$10.08000-$	-	NCNE	.
144	P66	35	120000.00000	$10.08000-$	-	acne	-
145	P67	35	10995.837月9	13.44000-	-	ACAE	.
146	P68	35	150000.00000	13.44000-	*	NLAE	-
147	06 C	es	544.00000	$11.76000-$,	NCNE	?
148	ค70	35	116201.07913	11.76000-	-	NCAE	.
149	P71	LL	-	8.40000-	-	ncne	8.40000-
150	072	35	24242.57891	15.80000-	*	NCAE	-
151	073	LL	.	13.40000-	*	NCNE	$13.40000-$

Table C-15. Resources (rows) used in solution six

NUMEER	FCW．．	4	．．ACTIVITY．．．	SLACK ACTIVITY	．LCWER LIMIT．	．．upper limit．	－dual activity
1	C1	35	122396126.505	$162366126.505-$	NUNE	NCNE	－
2	C2	As	124732500.327	1247325 CC．325－	NCNE	ACNE	1.00000
3	R01	UL	190000.00000	－	NONE	180000.0000	$522.49518-$
4	202	ul	13874.00000	．	NCNE	$19274 . C C 000$	8．40000－
5	R03	UL	10647.00000	－	nCNE	10647.00600	414．49508－
6	204	Ul	11356.00000	．	NOME	11356.00000	40．23087－
7	R05	UL	21293.00000	．	NCNE	21293.00000	$10.03000-$
8	R 06	UL	21293.00000	－	NONE	21253.000 CC	$13.44000-$
9	RO7	UL	¢5300．00000	－	none	65300.00000	41．96133－
10	R08	35	42121．42171	1 184．5782\％	NCNE	44， 2006.00000	．
11	RO9	UL	21293.00000	－	nune	21253.00000	59．33673－
12	R10	Es	15721．34856	6281.65144	NONE	22003.00000	．
13	R11	A 5	－	1000．00000	NONE	1000.00000	－
14	R12	UL	30500000．0000	．	NONE	30500000.0000	． $05000-$
15	R13	UL	．	．	NCNE	．	． $04000-$
16	R14	ul	－	－	none	．	． $04000-$
17	215	ul	．	－	nene	．	． $04000-$
18	R16	UL	＊	．	NONE	－	． $04000-$
19	R17	ul	－	－	NONE	－	． $04000-$
20	R18	ul	－	－	NONE	－	． $04000-$
21	F19	UL	－	－	NCNE	－	． $14000-$
22	R20	UL	100000.00000	．	NONE	100000.00000	16．50000－
23	P21	es	146313.13453	د186．86547	nCaE	150000.00000	－
24	R22	ul	－	，	none	．	$677.63335-$
25	223	ul	－	．	NONE	－	SE．96208－
26	R24	U	．	．	NONE	－	$691.07339-$
27	R25	UL	－	－	NONE	－	$785.25268-$
28	R26	ul	－	＊	NONE	．	789．27468－
29	R27	UL	－	．	NCNE	．	$734.83168-$
30	R28	JL	－	．	NCNE	－	842．39422－
31	R2\％	UL	－	．	nene	－	759．1う865－
32	R30	ul	－	－	NGNE	－	902．15520－
33	－ 31	UL	－	－	NCNE	－	$796.72401-$
34	R 32	UL	－	－	none	＊	753．5627コー
35	R33	ul	．	－	NCNE	－	950．44727－
36	R34	UL	．	．	NCNE	．	704．94673－
37	R35	35	119743310.545	180256685.454	NONE	295595995．559	－
39	236	$3 \leq$	2¢8170983．472	71805C16．5070	NONE	297959555．950	－
39	237	55	278716791.654	21283＜08．3445	ACNE	295995995．999	－
40	R3E	55	27274103.1989	272725896.800	NONE	295955955．959	－
41	R39	35	27290120.7757	272719879.224	NONE	299955959．999	－
42	R40	35	145329866.541	154670132.458	NUNE	く99¢¢¢¢cs．sc9	－
43	R41	UL	－	－	NONE	－	736．61467－
44	R42	UL	．	．	NCNE	－	$279.94394-$
45	R43	ul	．	－	NONE	－	\＄50．05467－
46	R44	UL	．	．	NONE	－	414．60739－
47	R45	Ul	－	－	NCNE	－	668．85272－
48	R46	UL	－	－	NONE	－	906．22486－
49	R47	J	．	．	NONE	．	1C92．c073E－

NUMEER	...RO*..	4 T	...ACTIVITY...	SLACK ACTIVITY	..LOEEFLIMIT.	. . upper limit.	- dual activity
50	R4E	UL	-	-	NONE	.	1064.38304-
51	R47	ul	.	.	NONE	.	$710.89804-$
52	R 50	u	-	.	NONE	.	1711.12361-
53	R51	u	-	-	NONE	-	$634.5925 \mathrm{C}-$
54	R52	ul	-	-	NONE	.	$1141.27100-$
55	$R 53$	UL	.	.	NCNE	.	$634.50100-$
56	R54	J	-	-	NONE	.	403.20000-
57	255	UL	-	.	NONE	.	B4.00000-
58	R56	UL	.	-	NCNE	.	$527.60000-$
59	R57	UL	-	-	NUNE	.	$336.00000-$
60	R58	UL	.	.	NCNE	-	$33.60000-$
61	R59	u	-	.	NONE	-	$67.20000-$
E2	560	ul	.	-	NONE	.	$67.20000-$
63	R61	UL	.	.	NONE	-	$134.40000-$
64	R62	UL	.	.	NONE	-	100.80000-
65	263	ul	.	-	NONE	-	241.16008-
66	R64	UL	-	-	NONE	-	$113.30000-$
67	R65	UL	-	-	NONE	-	$134.40000-$
68	266	UL	-	-	NONE	-	$113.30000-$
69	R67 7	U	.	-	NONE	-	$336.0000 \mathrm{C}-$
70	R68	35	20335.30356	35164.69144	none	¢0000.00000	.
71	R69	UL	10000.00000	-	NCNE	10000.00000	404.41508-
72	R70	u	40000.00000	.	NONE	$4000 C . \operatorname{cocco}$	30.15067-
73	R71	35	78614.98402	41385.01598	NUNE	120000.00000	
74	R 72	35	18567.74232	6130.65768	NONE	250CC. 00000	-
75	R73	UL	150003.00000	.	none	150000.0000	23.52133-
76	274	95	-	30000.00000	NONE	3000.0006	*
77	R75	UL	170000.00000		NONE	$1700 \mathrm{CO.C000C}$	$47.57673-$
78	R76	35		1000.00000	NONE	1000.00000	.

Table C-16. Activities (columns) used in solution six

NUMBER	- COLUMN.	AT	...ACTIVITY...	.. INPUT CEST..	. . Lower Limit.	. .lpper linit.	. RECUCED COST.
79	PO1	UL	75000.00000	$51.43000-$	-	75000.00000	4.27550
80	P02	LL	.	$44.62000-$	-	nCAE	577.72660-
81	-03	- 5	71813.13453	68.30000-	.	ncne	.
42	P04	35	-	158.30000-	-	NONE	-
83	P05	35	-	$147.00000-$	-	1000.00000	-
84	P06	35	10400.35104	$136.40000-$.	11000.00000	-
85	P07	BS	8670.71431	$105.40000-$.	NCAE	-
86	008	35	6935.80149	$117.50000-$.	ACNE	-
87	-09	35	.	$100.80000-$.	NCAE	-
88	P10	35	.	115.35000-	-	nenc	-
89	P11	35	.	$83.80000-$	-	NCNE	
90	P12	BS	7229.99864	82.90000-	.	NCNE	-
91	P13	35	.	$37.50000-$	-	20000.00CCC	
92	P14	95	75000.00000	. $02000-$.	NCNE	.
93	P15	es	.	.02000-	-	NCAE	-
94	F16	55	71813.13453	. $02000-$.	NCNE	-*
95	P17	LL	.	. $82000-$.	NCNE	672.19465-
96	P18	Ll	-	. $\mathrm{c} 200 \mathrm{C-}$.	NCAE	$450.30133-$
97	219	9s	10400.35104	. $02000-$.	NCAE	.
99	P20	35	8670.71431	. 02000-	-	NCNE	-
99	P21	85	E 385.80149	. $02000-$.	NCNE	.
100	222	LL	-	. $02000-$	-	NCAE	$440.23032-$
101	023	3 S		. $62000-$.	ncte	-
102	P24	LL	-	.02000-	-	NCAE	$341.84951-$
103	-25	35	7229.97864	. $\mathrm{C} 2000-$.	nche	-
104	P26	Ll	-	. $22000-$	-	ncne	293.23501-
105	P27	35	75000.00000	2c.80000-	.	ncne	-
106	P28	BS	-	$23.00000-$.	NOAE	.
107	P29	35	71813.13453	20.E0000-	-	nche	-
109	P30	35	.	$51.40000-$.	NCAE	-
109	P31	as	-	+1.30000-	.	NCNE	-
110	P32	Es	10400.35104	$51.40000-$	-	ACAE	-
111	P33	35	8670.71431	$41.30000-$	-	NCAE	-
112	P34	35	6385.30149	$31.20000-$.	ACAE	-
113	235	35	.	$41.30000-$.	NCNE	-
114	P36	BS	.	$61.50000-$		NCAE	-
115	P37	85	.	2C. $80000-$.	NCAE	-
116	P38	95	7225.99864	$31.20000-$	-	NCNE	-
117	P39	35	725.99864	20.80000-	.	NCAE	-
118	P40	as	187500.00000	403.20000	.	NCNE	-
119	PL_{1}	35	.	84.00000	.	NCNE	*
120	042	B5	136444.95560	537.60000	-	ncAE	-
121	P43	es	.	336.00000	.	nOne	*
122	044	35	,	33.60000	-	NCAE	-
123	P45	53	く13207.19631	67.20cco	.	ACAE	.
124	046	55	182055.00041	67. 20000	.	NCAE	-
125	P4 7	35	7 C 235.17512	134.40000	-	NCAE	-
126	P48	as	-	100.80020	-	ACAE	-
127	P4S	LL	.	67.20000	-	NCNE	173.96008-

NUMEER	- COLUMA.	4 T	. ..ACtivitr...	.. INPUT CEST..	. LOwer LImit.	. . UPPER LIMIT.	-RELUCED COST.
128	250	85	*	113.30000	-	NCAE	-
129	951	95	66515.98750	134.40000	.	NCNE	
130	F52	35	-	113.30000	.	NCAE	
131	P53	35	9く973918.8992	. 14000 -	-	NCNE	
132	P54	as	-	336. $00000-$.	NCAE	
133	P55	BS	115743310.546	. 040000	.	ncae	
134	P56	35	229190983.492	. $04000-$.	NCNE	.
135	P57	35	278716791.555	. $04000-$.	NCNE	
136	P58	85	27274103.19 e9	. $64000-$.	NCNE	
137	P59	35	27280120.7757	. 04000 -	.	NCNE	
139	P60	US	145329866.541	. $04000-$.	ACAE	.
137	P61	LL	.	570.80000	.	NCAE	5771.8096
140	P62	35	213074e2.9835	. $05000-$	-	ACAE	
14 :	P63	35	2003E.30856	2.40000-	.	NCAE	
142	P64	95	10000.00000	$10.08000-$.	NCAE	
143	P65	55	40000.00000	$10.08000-$.	NCAE	
144	P66	es	78614.98402	$10.08000-$.	ALAE	.
145	P67	RS	19369.94232	$13.44000-$	-	NCAE	.
146	P68	55	150000.00000	$13.44000-$.	NGNE	
147	P69	LL	.	11.7 7 OOOO-	-	ncae	$11.76000-$
148	P70	35	170000.00000	11. $760 C O-$.	NGAE	1.176000
149	P71	LL	.	$8.40000-$.	ACNE	$8.40000-$
150	072	BS	46813.13453	16.80000-	-	NCNE	
151	P73	LL	-	$13.40000-$	-	NCNE	13.40000-

Table C-1 7. Ranges of major resources at limit level

| Resource | | Solution Two | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |

Table C-17. (continued)

| Resource | | | Solution Three | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Tab1e C-17. (continued)

| Resource | | Solution Four | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |

Table $\mathrm{C}-17$. (continued)

Resource			Solution Five

```
Table C-17. (continued)
```

Resource	Solution Six				
	Supply	Leve1	$\begin{gathered} \text { MVP } \\ \$ \end{gathered}$	Range of MVP	
				Lower Activity	Upper Activity
Land (R01)	180,000 ha	180,000 ha	522.50	177,513 ha	181,919 ha
Labor Jan. 1-Feb. 28 (R02)	$19,874 \mathrm{hr}$	$19,874 \mathrm{hr}$	8.40	0.0 hr	$40,709 \mathrm{hr}$
Labor Mar. 7-Mar. 15 (R03)	$10,647 \mathrm{hr}$	$10,647 \mathrm{hr}$	414.50	$9,619 \mathrm{hr}$	$11,979 \mathrm{hr}$
Labor Mar. 16-Mar. 31 (R04)	$11,356 \mathrm{hr}$	$11,356 \mathrm{hr}$	40.23	0.0 hr	$32,965 \mathrm{hr}$
Labor Ap. 1-Ap. 30 (R05)	$21,293 \mathrm{hr}$	21,293 hr	10.08	0.0 hr	$99,908 \mathrm{hr}$
Labor May 1-May 30 (R06)	$21,293 \mathrm{hr}$	$21,293 \mathrm{hr}$	13.44	$15,163 \mathrm{hr}$	$40,163 \mathrm{hr}$
Labor May 31-Aug. 30 (R07)	$65,300 \mathrm{hr}$	$65,300 \mathrm{hr}$	41.96	$50,749 \mathrm{hr}$	$84,155 \mathrm{hr}$
Labor Sept. 1-Oct. 31 (R08)	-	-	-	-	-
Labor Nov. 1-Nov. 30 (R09)	$21,293 \mathrm{hr}$	$21,293 \mathrm{hr}$	59.34	$7,667 \mathrm{hr}$	$24,076 \mathrm{hr}$
Operating Capital (R12)	\$30,500,000	\$30,500,000	0.05	0.0	\$51,800,000
Hiring Labor Mar. 1-Mar. 15 (R69)	$10,000 \mathrm{hr}$	$10,000 \mathrm{hr}$	404.41	$8,972 \mathrm{hr}$	$11,332 \mathrm{hr}$
Hiring Labor Mar. 16-Mar. 31 (R70)	$40,000 \mathrm{hr}$	$40,000 \mathrm{hr}$	30.15	$11,799 \mathrm{hr}$	$61,609 \mathrm{hr}$
Hiring Labor Ap. 1-Ap. 30 (R71)	-	-	-	-	-
Hiring Labor May 31-Aug. 30 (R73)	$150,000 \mathrm{hr}$	$150,000 \mathrm{hr}$	28.52	$135,450 \mathrm{hr}$	$168,855 \mathrm{hr}$
Hiring Labor Nov. 1-Nov. 30 (R75)	$170,000 \mathrm{hr}$	$170,000 \mathrm{hr}$	47.58	$156,374 \mathrm{hr}$	$172,783 \mathrm{hr}$

Table C-18. Ranges of major activities at limit level ${ }^{\text {a }}$ (solutions 2-6)

Activity		Solution Two		Solution Three

[^2]Table C-18. (continued)

Activity		Solution Four		Solution Five

Table C-18. (continued)

| Activity | | Solution Six |
| :--- | :---: | :---: | :---: | :---: |

Table C-19. Ranges of major resources at intermediate level (solutions 2-6)

Resource	Solution Two								
	Supply		Level		MVP at the lower activity \$	MVP at the upper activity \$	Range of MVP		
							lower activity		$\begin{aligned} & \text { upper } \\ & \text { activity } \end{aligned}$
R08	-		-		-	-	-		-
R10	22,003		12,208		6.72	244.01	11,208		13,526hr
R21	115,000		75,078	"	12.30	351.08	0.0	"	86,062
R35	300,000,000	"	99,400,000	"	0.01	0.03	75,400,000	"	-
R36	300,000,000	"	128,300,000	'	0.03	0.01	117,870,000	"	157,000,000 "
R37	300,000,000	"	147,800,000	"	0.03	0.01	137,000,000	"	177,000,000 "
R38	300,000,000	"	43,600,000	"	0.03	0.03	39,000,000	"	-
R39	300,000,000	"	53,000,000		0.01	0.03	29,000,000	"	-
R40	300,000,000		93,700,000		0.01	0.03	81,000,000		-
R68	60,000		40,414		9.40	6.72	28,108		-
R69	10,000		7,014	"	95.94	8.40	5,806	"	-
R70									
R71									
R72	25,000	"	12,065	"	52.91	13.44	8,974		-
R74	30,000	"	22,144	"	5.37	10.08	544	"	-
R75	170,000	"	106,469	"	86.56	10.08	102,754		-
R76									

Table C-19. (continued)

Resource	Solution Three					
	Supply	Leve1	$\begin{gathered} \text { MVP } \\ \text { at the } \\ \text { lower } \\ \text { activity } \\ \text { \$ } \end{gathered}$	```MVP at the upper activity $```	Range of MVP	
					lower activity	upper activity
R08						
R10	$22,003 \mathrm{hr}$	$18,028 \mathrm{hr}$	6.72	138.80	$17,028 \mathrm{hr}$	19,297hr
R21	150,000 "	148,865 "	12.30	130.67	$0.0{ }^{\prime \prime}$	148,865 "
R35	300,000,000 "	133,000,000 "	0.02	0.03	132,900,000 "	139,700,000 "
R36	300,000,000 "	212,000,000 "	0.02	0.02	202,000,000 "	212,000,000 "
R37	300,000,000 "	268,000,000 "	0.02	0.02	260,000,000 "	275,000,000 "
R38	300,000,000 "	26,000,000 "	0.09	0.02	26,000,000 "	35,000,000 "
R39	300,000,000 "	43,000,000 "	0.02	0.02	42,000,000 "	50,000,000 "
R40	300,000,000 "	146,000,000 "	0.03	0.03	146,000,000 "	-
R68	60,000 "	24,515 "	77.25	6.72	24,515 "	-
R69						
R70	40,000 "	26,033 "	8.69	8.40	9,149 "	-
R71	120,000 "	81,130 "	32.76	5.50	73,722 "	-
R72	25,000 "	19,713 "	136.82	13.44	19,712 "	-
R74	30,000 "	19,796 "	25.62	10.08	0.0 "	-
R75						
R76						

Table C-19. (continued)

Resource	Solution Four										
	Supply		Level		```MVP at the lower activity $```	MVP at the upper activity \$	Range of MVP				
				Lower activity				Upper activity			
R08											
R10	22.003			11,788		8.4	595.28	10,788		11,788	
R21											
R35	300,000,000	"	99,000,000	"	0.14	0.03	89,000,000	"	116,000,000		
R36	300,000,000	"	193,000,000	"	0.11	0.04	181,000,000	"	-		
R37	300,000,000	"	223,000,000	"	0.03	0.04	202,000,000	"	-		
R38	300,000,000	"	40,000,000	"	0.02	0.04	10,000,000	"	-		
R39	300,000,000	"	29,000,000	"	0.08	0.04	28,000,000	"	-		
R40	300,000,000	"	110,000,000	"	0.61	0.04	108,000,000	"	-		
R68	30,000	"	32,418	"	43.23	8.40	0.0	"	-		
R69	20,000	"	8,900	"	340.01	10.08	4,778		-		
R70											
R71											
R72	25,000	"	14,611	"	96.50	13.44	6,731	"	-		
R74	30,000	"	544	"	53.14	11.76	0.0	"	-		
R75	170,000	"	142,314	"	34.54	11.76	141,477	"	-		
R76	1,000	"	-		0.0	8.40	0.0	"	-		

Table C-19. (continued)

Resource	Solution Five									
	Supply		Leve1		MVP at the lower activity \$	MVP at the upper activity \$	Range of MVP			
							Lower activity		Upper activity	
R08										
R10	22,003		8,524		8.40	585.40	7,524		8,524	
R21	115,000	"	74,243	"	13.40	111.72	0.0	"	75,000	
R35	300,000,000	"	73,000,000	"	0.12	0.02	72,000,000	"	76,000,000	
R36	300,000,000	"	152,000,000	"	0.10	0.04	151,000,000	"	154,000,000	
R37	300,000,000	"	177,000,000	"	0.02	0.04	173,000,000	"	-	
R38	300,000,000	"	49,000,000	"	0.01	0.04	44,000,000		-	
R39	300,000,000	"	29,000,000	"	0.07	0.04	28,000,000		-	
R40	300,000,000	"	81,000,000	"	0.63	0.04	59,000,000		-	
R68	60,000	"	24,181	"	37.36	8.40	21,900		-	
R69	10,000	"	5,330	"	293.84	10.08	5,040		-	
R70										
R71										
R72	25,000	"	10,996		60.01	13.44	9,586		-	
R74	30,000	"	544		48.39	11.76	0.0	"	-	
R75	170,000	"	116,202		31.46	11.76	115,364		-	
R76	1,000	"	-		0.0	8.40	0.0		-	

Table C-19. (continued)

Resource	Solution Six					
	Supp1y	Level	$\begin{gathered} \text { MVP } \\ \text { at the } \\ \text { lower } \\ \text { activity } \\ \$ \end{gathered}$	$\begin{gathered} \text { MVP } \\ \text { at the } \\ \text { upper } \\ \text { activity } \\ \$ \end{gathered}$	Range of MVP	
					1ower activity	$\begin{gathered} \text { upper } \\ \text { activity } \end{gathered}$
R08	$44,006 \mathrm{hr}$	$42,121 \mathrm{hr}$	11.76	161.23	$12,121 \mathrm{hr}$	44,424 hr
R10	22,003 "	15,721 "	8.40	831.57	14,721 "	15,721 "
R21	150,000 "	146,813 "	13.40	130.22	$0.0{ }^{\prime \prime}$	154,796"
R35	300,000,000 "	120,000,000 "	0.18	0.04	117,000,000 "	-
R36	300,000,000 "	228,000,000 "	0.10	0.04	228,000,000 "	-
R37	300,000,000 "	279,000,000 "	0.03	0.04	279,000,000 "	-
R38	300,000,000 "	27,000,000 "	0.06	0.04	20,000,000 "	-
R39	300,000,000 "	27,000,000 "	0.12	0.04	21,000,000 "	-
R40	300,000,000 "	145,000,000 "	0.17	0.04	145,000,000 "	-
R68	60,000 "	20,835 "	49.95	8.40	12,512 "	-
R69						
R70						
R71						
R72	120,000 "	78,615 "	23.84	10.08	61,176 "	-
R74	25,000 "	18,870 "	171.96	13.44	18,870 "	-
R75	30,000 "	-	0.0	11.76	0.0 "	-
R76	1,000 "	-	0.0	8.4	0.0	8.4 "

[^0]: ${ }^{1}{ }_{\mathrm{MT}}=$ metric ton (2,240 lbs.)

[^1]: ${ }^{1}$ Assuming the cow will continue production for 8 years on the average. Note: Average days in milk is 302 days.

[^2]: $a_{\text {The }}$ above activities are at limit level because they are upper bounded.

